

## SH67P33

## **OTP 4-bit Microcontroller**

#### **Features**

- SH6610C-based single-chip 4-bit micro-controller
- ROM: 1024 X 16 bits OTP ROM
- RAM: 48 X 4 bits RAM (Data Memory)
- Operation voltage: 1.8V 3.6V (Typically 3.0V)
- 17 CMOS bi-directional I/O pins
- 4-level subroutine nesting (including interrupts)
- One 8-bit auto re-loadable timer/counter
- Warm-up timer for power-on reset
- Powerful interrupt sources:
  - Internal interrupt (Timer0).
  - External interrupts: PortB & PortC (rising edge).

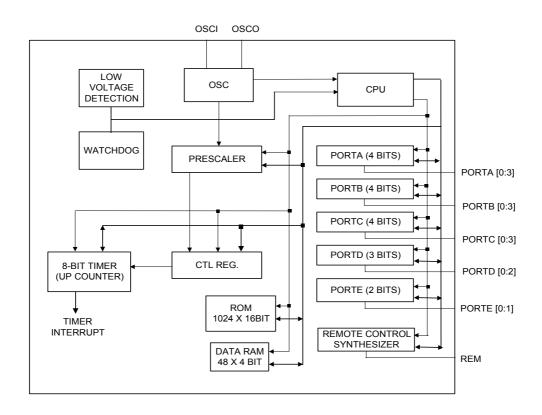
- Built-in remote control programmable carrier synthesizer
- Oscillator

Ceramic resonator: 400K - 4MHz. Build-in RC oscillator:  $4MHz \pm 2\%$ 

- Instruction cycle time:
  - 4/455KHz ( $\approx 8.79 \mu s)$  for 455KHz OSC clock
  - 4/4MHz (= 1µs) for 4MHz OSC clock
- Two low power operation modes: HALT and STOP
- Built-in watchdog timer
- Oscillator select (code option)
- Port interrupt source select (code option)

### **General Description**

SH67P33 is dedicated to infrared remote control transmitter applications. This chip integrates the SH6610C 4-bit CPU core with SRAM, program ROM, one 8-bit timer, and programmable input/output driving buffers and carrier synthesizer. The standby function, which can be used to stop/start the ceramic resonator or internal RC oscillation, facilitating the low power dissipation of the system.


## **Pin Configuration**

| GND         | 1  |             | 20 | VDD     |
|-------------|----|-------------|----|---------|
| PORTD.0     | 2  |             | 19 | REM     |
| PORTD.1     | 3  |             | 18 | PORTA.3 |
| PORTE0/OSCI | 4  | S           | 17 | PORTA.2 |
| PORTE1/OSCO | 5  | SH67P33     | 16 | PORTA.1 |
| PORTD.2     | 6  | <b>7</b> P. | 15 | PORTA.0 |
| PORTC.0     | 7  | 33          | 14 | PORTB.3 |
| PORTC.1     | 8  |             | 13 | PORTB.2 |
| PORTC.2     | 9  |             | 12 | PORTB.1 |
| PORTC.3     | 10 |             | 11 | PORTB.0 |
|             |    |             |    |         |

1



## **Block Diagram**



## **Pin Descriptions**

| Pin No. | Designation | I/O | Descriptions                                                                                 |
|---------|-------------|-----|----------------------------------------------------------------------------------------------|
| 7~10    | PC0 ~ PC3   | I/O | Bit programmable I/O pins, Vector Interrupt (Active rising edge).                            |
| 2       | PD0         | I   | Input pin.                                                                                   |
| 3, 6    | PD1 ~ PD2   | I/O | Bit programmable I/O pins.                                                                   |
| 19      | REM         | 0   | Carrier synthesizer for infrared or RF output pin.                                           |
| 20      | $V_{DD}$    | Р   | Power supply.                                                                                |
| 4       | PE0/OSCI    | I/O | Bit programmable I/O pin, shared with oscillator input pin connected to ceramic oscillator   |
| 5       | PE1/OSCO    | I/O | Bit programmable I/O pin, shared with oscillator output pin connected to ceramic oscillator. |
| 1       | GND         | Р   | Ground pin.                                                                                  |
| 15~18   | PA0 ~ PA3   | I/O | Bit programmable I/O pins.                                                                   |
| 11~14   | PB0 ~ PB3   | I/O | Bit programmable I/O pins, Vector Interrupt (Active rising edge).                            |



### **Functional Description**

#### 1. CPU

The CPU contains the following function blocks: Program Counter, Arithmetic Logic Unit (ALU), Carry Flag, Accumulator, Table Branch Register, Data Pointer (INX, DPH, DPM, and DPL), and Stack.

#### 1.1. PC (Program Counter)

The Program Counter is used to address the 1K program ROM. It consists of 12-bits: Page Register (PC11), and Ripple Carry Counter (PC10, PC9, PC8, PC7, PC6, PC5, PC4, PC3, PC2, PC1 and PC0).

The program counter normally increases by one (+1) with every execution of an instruction except in the following cases:

- (1) When executing a jump instruction (such as JMP, BA0, BC);
- (2) When executing a subroutine call instruction (CALL);
- (3) When an interrupt occurs;
- (4) When the chip is at the INITIAL RESET mode.

The program counter is loaded with data corresponding to each instruction.

#### 1.2. ALU and CY

ALU performs arithmetic and logic operations. The ALU provides the following functions:

Binary addition/subtraction (ADC, SBC, ADD, SUB, ADI, SBI)

Decimal adjustment for addition/subtraction (DAA, DAS) Logic operations (AND, EOR, OR, ANDIM, EORIM, ORIM)

Decision (BA0, BA1, BA2, BA3, BAZ, BC)

Logic Shift (SHR)

The Carry Flag (CY) holds the ALU overflow, which the arithmetic operation generates. During an interrupt service or call instruction, the carry flag is pushed into the stack and restored back from the stack by the RTNI instruction. It is unaffected by the RTNW instruction.

#### 1.3. Accumulator

Accumulator is a 4-bit register holding the results of the arithmetic logic unit. In conjunction with ALU, data is transferred between the accumulator and system register, or data memory can be performed.

#### 1.4. Stack

A group of registers used to save the contents of CY & PC (11-0) sequentially with each subroutine call or interrupt. It is organized 13 bits × 4 levels. The MSB is saved for CY. 4 levels are the maximum allowed for subroutine calls and interrupts.

The contents of Stack are returned sequentially to the PC with the return instructions (RTNI/RTNW). Stack is operated on a first-in, last-out basis. This 4-level nesting includes both subroutine calls and interrupts requests. Note that program execution may enter an abnormal state if the number of calls and interrupt requests exceeds 4, and the bottom of stack will be shifted out.

#### 2. ROM

The SH67P33 can address 1024 X 16 bit of program area from \$000 to \$3FF.

Vector Address Area (\$000 to \$004)

The program is sequentially executed. There is an area address \$000 through \$004 that is reserved for a special interrupt service routine such as starting vector address.

| Address | Instruction | Remarks        |
|---------|-------------|----------------|
| \$000H  | JMP         | Jump to RESET  |
| \$001H  | NOP         | Reserved       |
| \$002H  | JMP         | Jump to TIMER0 |
| \$003H  | NOP         | Reserved       |
| \$004H  | JMP         | Jump to PBC    |



## 3. RAM

Built-in RAM consists of general purpose data memory and system registers.

Data memory and the system register can be accessed by direct addressing in one instruction. The following is the memory allocation map: \$000 - \$01F: System register and I/O; \$020 - \$04F: Data memory (48 × 4 bits). Configuration of System Register

| Address | Bit3   | Bit2   | Bit1   | Bit0        | R/W    | Description                                                                                     |
|---------|--------|--------|--------|-------------|--------|-------------------------------------------------------------------------------------------------|
| \$00    | -      | IET0   | -      | IEP         | R/W    | Interrupt enable flags                                                                          |
| \$01    | -      | IRQT0  | -      | IRQP        | R/W    | Interrupt request flags                                                                         |
| \$02    | =      | TM0.2  | TM0.1  | TM0.0       | R/W    | Timer0 Mode register (Prescaler)                                                                |
| \$03    | =      | =      | -      | -           | -      | Reserved                                                                                        |
| \$04    | TL0.3  | TL0.2  | TL0.1  | TL0.0       | R/W    | Timer0 load/counter register low digit                                                          |
| \$05    | TH0.3  | TH0.2  | TH0.1  | TH0.0       | R/W    | Timer0 load/counter register high digit                                                         |
| \$06    | -      | -      | -      | -           | -      | Reserved                                                                                        |
| \$07    | -      | -      | -      | -           | -      | Reserved                                                                                        |
| \$08    | PA.3   | PA.2   | PA.1   | PA.0        | R/W    | PORTA                                                                                           |
| \$09    | PB.3   | PB.2   | PB.1   | PB.0        | R/W    | PORTB                                                                                           |
| \$0A    | PC.3   | PC.2   | PC.1   | PC.0        | R/W    | PORTC                                                                                           |
| \$0B    | -      | PD.2   | PD.1   | PD.0        | R/W    | PORTD                                                                                           |
| \$0C    | -      | -      | PE.1   | PE.0        | R/W    | PORTE                                                                                           |
| \$0D    | -      | -      | -      | REMO<br>REM | W<br>R | Bit0: REMO output data.<br>Bit0: REM pin output status.                                         |
| \$0E    | TBR.3  | TBR.2  | TBR.1  | TBR.0       | R/W    | Table Branch Register                                                                           |
| \$0F    | INX.3  | INX.2  | INX.1  | INX.0       | R/W    | Pseudo index register                                                                           |
| \$10    | DPL.3  | DPL.2  | DPL.1  | DPL.0       | R/W    | Data pointer for INX low nibble                                                                 |
| \$11    | -      | DPM.2  | DPM.1  | DPM.0       | R/W    | Data pointer for INX middle nibble                                                              |
| \$12    | =      | DPH.2  | DPH.1  | DPH.0       | R/W    | Data pointer for INX high nibble                                                                |
| \$13    | PPULL  | CPS2   | CPS1   | CPS0        | R/W    | Bit2-0: Carrier OSC pre-divider Bit3: Port Pull-low MOS Control                                 |
| \$14    | WDT    | -      | -      | -           | R/W    | Bit3: Watchdog timer reset/flag (write 1 to reset WDT)                                          |
| \$15    | LPD3   | LPD2   | LPD1   | LPD0        | R/W    | LPD Enable Control (LPD3 ~ 0):<br>1010: LPD Disable<br>Else: LPD Enable (Power-on initial 0000) |
| \$16    | PA3OUT | PA2OUT | PA10UT | PA0OUT      | R/W    | Set PORTA to be output port                                                                     |
| \$17    | PB3OUT | PB2OUT | PB1OUT | PB0OUT      | R/W    | Set PORTB to be output port                                                                     |
| \$18    | PC3OUT | PC2OUT | PC10UT | PC0OUT      | R/W    | Set PORTC to be output port                                                                     |
| \$19    | =      | PD2OUT | PD10UT | 0           | R/W    | Set PORTD to be output port                                                                     |
| \$1A    | -      | -      | PE10UT | PE0OUT      | R/W    | Set PORTE to be output port                                                                     |
| \$1B    | CFL3   | CFL2   | CFL1   | CFL0        | R/W    | Carrier low level timer load data register                                                      |
| \$1C    | CFL7   | CFL6   | CFL5   | CFL4        | R/W    | Carrier low level timer load data register                                                      |
| \$1D    | CFH3   | CFH2   | CFH1   | CFH0        | R/W    | Carrier high level timer load data register                                                     |
| \$1E    | CFH7   | CFH6   | CFH5   | CFH4        | R/W    | Carrier high level timer load data register                                                     |
| \$1F    | -      | -      | -      | -           | -      | Reserved                                                                                        |



#### 4. Timer0

### 4.1. Configuration and Operation

Timer-0 consists of an 8-bit write-only timer load register (TL0L, TL0H), and an 8-bit read-only timer counter (TC0L, TC0H). The counter and load register both have low order digits and high order digits. Writing data into the timer load register (TL0L, TL0H) can initialize the timer counter.

Load register programming: Write the low-order digit first, and then the high-order digit. The timer counter is automatically loaded with the contents of the load register when the high order digit is written or counter counts overflow from \$FF to \$00.

Timer Load Register: Since register H controls the physical READ/WRITE operations, follow the following rules:

Write Operation:

Low nibble first;

High nibble to update the counter

Read Operation:

## High nibble first; Followed by Low nibble.

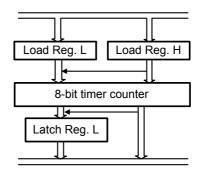



Figure. 1 Timer Load register Configure

#### 4.2. Timer0 Interrupt

The timer overflow will generate an internal interrupt request when the counter counts overflow from \$FF to \$00. If the interrupt enable flag is enabled, then a timer interrupt service routine will start. This can also be used to wake CPU from HALT mode.

#### 4.3. Timer0 Mode Register

The timer can be programmed in several different pre-scaler ratios by setting Timer Mode Register (TM0). The 8-bit counter counts pre-scaler overflow output pulses. The TIMER mode registers (TM0) are 3-bit registers used for timer control as shown in Table 1. These mode registers select the input pulse sources into the timer.

Table 1. Timer0 Mode Register

| TM0.2 | TM0.1 | TM0.0 | Pre-scaler<br>Divide Ratio | Ratio N        |
|-------|-------|-------|----------------------------|----------------|
| 0     | 0     | 0     | /2 <sup>11</sup>           | 2048 (initial) |
| 0     | 0     | 1     | /2 <sup>9</sup>            | 512            |
| 0     | 1     | 0     | /27                        | 128            |
| 0     | 1     | 1     | /2 <sup>5</sup>            | 32             |
| 1     | 0     | 0     | /2 <sup>3</sup>            | 8              |
| 1     | 0     | 1     | /2²                        | 4              |
| 1     | 1     | 0     | /21                        | 2              |
| 1     | 1     | 1     | /20                        | 1              |



#### **5. I/O PORT**

The SH67P33 provides 17 I/O pins. Each I/O pin contains pull-low MOS controllable by the program. When every I/O is used as an input port, the port control register (PCR) controls ON/OFF of the output buffer. Sections below show the circuit configuration of I/O ports.

#### PORTA, PORTB, PORTC, PORTD and PORTE

Each of these ports contains 4 bit I/O pins (PortD contains 2 bit I/O pins and 1 input pin, PortE contains 2 bit I/O pins). ON/OFF of the output buffer for port can be controlled by the port control register (PCRA, PCRB, PCRC, PCRD and PCRE). Port I/O mapping address is shown as follows:

| Address | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Remarks |
|---------|------|------|------|------|-----|---------|
| \$08    | PA.3 | PA.2 | PA.1 | PA.0 | R/W | PORTA   |
| \$09    | PB.3 | PB.2 | PB.1 | PB.0 | R/W | PORTB   |
| \$0A    | PC.3 | PC.2 | PC.1 | PC.0 | R/W | PORTC   |
| \$0B    | -    | PD.2 | PD.1 | PD.0 | R/W | PORTD   |
| \$0C    | -    | -    | PE.1 | PE.0 | R/W | PORTE   |

- The following is the circuit configuration diagram:

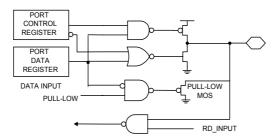



Figure. 2 Port Configuration Function Block Diagram

#### Port I/O Control Register:

| Address | Bit3   | Bit2   | Bit1   | Bit0   | R/W | Remarks                  |
|---------|--------|--------|--------|--------|-----|--------------------------|
| \$16    | PA3OUT | PA2OUT | PA10UT | PA0OUT | R/W | Set PORTA as output port |
| \$17    | PB3OUT | PB2OUT | PB1OUT | PB0OUT | R/W | Set PORTB as output port |
| \$18    | PC3OUT | PC2OUT | PC10UT | PC0OUT | R/W | Set PORTC as output port |
| \$19    | -      | PD2OUT | PD10UT | 0      | R/W | Set PORTD as output port |
| \$1A    | -      | -      | PE10UT | PE0OUT | R/W | Set PORTE as output port |

I/O control register: PAXOUT, PBXOUT, PCXOUT, (X = 0, 1, 2, 3) PD2OUT, PD1OUT, PE1OUT, PE0OUT

- 1: Set I/O as an output buffer.
- 0: Set I/O as an input buffer (power-on initial).

## Controlling the pull-low MOS

These ports contain pull-low MOS controlled by the program. PPULL register controls On/Off of all pull-low MOS simultaneously. Pull-low MOS is controlled by the port data registers (PA, PB, PC, PD and PE) of each port also. Thus, the pull-low MOS can be turned on and off individually.

Port Function Control (PMOD) is below:

| Address | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W | Remarks                         |
|---------|-------|-------|-------|-------|-----|---------------------------------|
| \$13    | PPULL | CPS2  | CPS1  | CPS0  | R/W | Bit3: Port Pull-low MOS Control |

PPULL Port Pull-low MOS enables control

0 = Disable PORT pull-low MOS (power-on initialization)

1 = Enable PORT pull-low MOS



#### **Port Interrupt**

The PORTB, PORTC and PORTD are used as port interrupt sources. Since PORT I/O is a bit programmable I/O, therefore only the input port can generate an external interrupt. Any transitions from PORTB and PORTC input pins from GND to **VDD** will generate an interrupt request (Default). when opt\_pint is HIGH, PORTB, PORTC and PORTD as the port interrupt source. Thus, further rising edge transitions can not be able to make interrupt request until all of the pins return to GND. The following is the port interrupt function block-diagram.

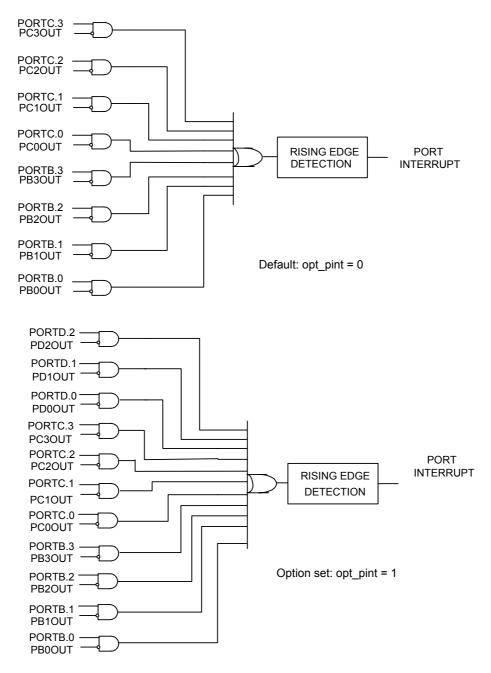



Figure. 3 PORT Interrupt Block Diagram



#### 6. Remote Control Synthesizer

SH67P33 builds-in a carrier synthesizer for infrared or RF remote control circuits.

| Address | Bit3  | Bit2 | Bit1 | Bit0        | R/W    | Remarks                                                                  |
|---------|-------|------|------|-------------|--------|--------------------------------------------------------------------------|
| \$0D    | -     | -    | -    | REMO<br>REM | W<br>R | Bit0: REMO output data.<br>Bit0: REM pin output status.                  |
| \$13    | PPULL | CPS2 | CPS1 | CPS0        | R/W    | Bit2-0: Carrier count source pre-divider Bit3: Port Pull-low MOS Control |

REMO: Remote output data control. The REM pin output status can be ready by instruction.

CPS2~0: Carrier counter source pre-divider control Register

The carrier synthesizer can be programmed in several different pre-scaler ratios by setting CPS2~0.

Carrier count source pre-divider control Register

| CPS2 | CPS1 | CPS0 | Pre-scaler<br>Divide Ratio   | Ratio N        |
|------|------|------|------------------------------|----------------|
| 0    | 0    | 0    | System clock/2 <sup>11</sup> | 2048 (initial) |
| 0    | 0    | 1    | System clock /2 <sup>9</sup> | 512            |
| 0    | 1    | 0    | System clock /2 <sup>7</sup> | 128            |
| 0    | 1    | 1    | System clock /2 <sup>5</sup> | 32             |
| 1    | 0    | 0    | System clock /2 <sup>3</sup> | 8              |
| 1    | 0    | 1    | System clock /2 <sup>2</sup> | 4              |
| 1    | 1    | 0    | System clock /2 <sup>1</sup> | 2              |
| 1    | 1    | 1    | System clock /2 <sup>0</sup> | 1              |

The carrier-generating counter is an 8bit count-up counter and it has two reload data register. The counter and load registers both have low order digits and high order digits. Writing data into the timer load registers (\$1B,\$1C,\$1D,\$1E) can initialize the counter.

After system reset, the counter is automatically loaded with the contents of high level timer load data register (\$1E,\$1D)and output high level at the same time. Following when counter counts overflow from \$FF to \$00,the counter is automatically loaded with the contents of low level timer load data register (\$1C,\$1B) and output low level at the same time. When counter counts overflow again from \$FF to \$00 again, the counter will be loaded with the contents of high level timer load data register again. The above sequences make up a complete loop. So the carrier synthesizer can output continuous carrier wave of certain duties and certain period.

If bit0 of \$0D(REMO) is set to 1 from 0, the carrier counter will be initialized to load high level timer load data register and output high level whatever states the counter is.

Load register programming: User can modify low level timer load data register (\$1B,\$1C) to change the width of the low level. User can also modify high level timer load data register(\$1D,\$1E)to change the width of high level. In the way the carrier synthesizer can output carrier wave of different duties and different period.

## Carrier load data register

| \$1B | CFL3 | CFL2 | CFL1 | CFL0 | R/W | Carrier low level timer load data register  |
|------|------|------|------|------|-----|---------------------------------------------|
| \$1C | CFL7 | CFL6 | CFL5 | CFL4 | R/W | Carrier low level timer load data register  |
| \$1D | CFH3 | CFH2 | CFH1 | CFH0 | R/W | Carrier high level timer load data register |
| \$1E | CFH7 | CFH6 | CFH5 | CFH4 | R/W | Carrier high level timer load data register |



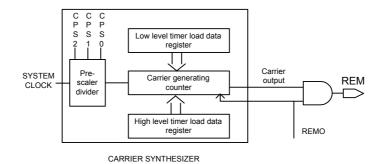



Figure. 4 Remote Control Functional Block Diagram

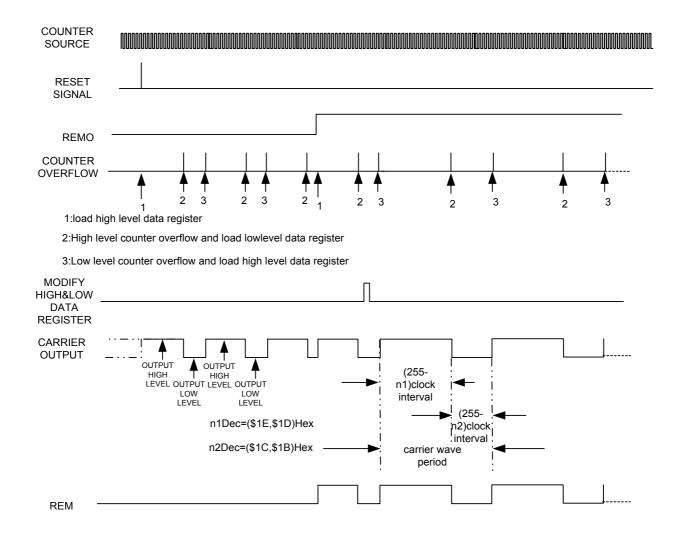
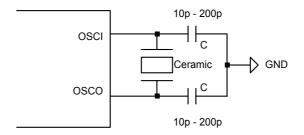



FIGURE.5 CARRIER SYNTHESIZE WAVE




## 7. System Clock and Oscillator

The System clock generator produces the basic clock pulses that provide the system clock with CPU and peripherals Instruction cycle time:

- (1) 4/455KHz (  $\approx 8.79 \mu s)$  for 455KHz system clock.
- (2) 4/4MHz ( =  $1\mu$ s) for 4MHz system clock.

## Oscillator

(1) Ceramic resonator: 400KHz - 4MHz.



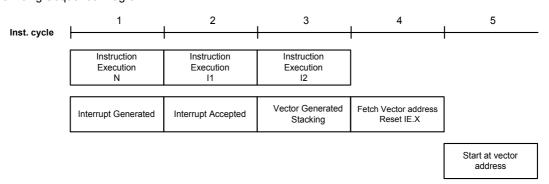
(2) Internal oscillator: 4MHz.



#### 8. Interrupt

Two interrupt sources are available on SH67P33:

- -Timer0 overflow interrupt
- -Port's rising edge detection interrupt (PBC)


#### **Interrupt Control Bits and Interrupt Service**

The interrupt control flags are mapped on \$00 through \$01 of the system register. They can be accessed or tested by the program. These flags are cleared to 0 at initialization by chip reset.

| Address | Bit3 | Bit2  | Bit1 | Bit0 | Remarks                 |
|---------|------|-------|------|------|-------------------------|
| \$00    | -    | IET0  | -    | IEP  | interrupt enable flags  |
| \$01    | -    | IRQT0 | -    | IRQP | interrupt request flags |

When IEx is set to 1 and the interrupt request is generated (IRQx is 1), the interrupt will be activated and vector address will be generated from the priority PLA corresponding to the interrupt sources. When an interrupt occurs, the PC and CY flag will be saved into stack memory and jump to interrupt service vector address. After the interrupt occurs, all interrupt enable flags (IEx) are reset to 0 automatically, thus, when IRQx is 1 and IEx is set to 1 again, the interrupt will be activated and vector address will be generated from the priority PLA corresponding to the interrupt sources.

Interrupt Servicing Sequence Diagram:



## **Interrupt Nesting:**

During the SH6610C CPU interrupt service, the user can enable any interrupt enable flag before returning from the interrupt. The servicing sequence diagram shows the next interrupt and the next nesting interrupt occurrences. If the interrupt request is ready and the instruction of execution N is IE enable, then the interrupt will start immediately after the next two instruction executions. However, if instruction I1 or instruction I2 disables the interrupt request or enable flag, then the interrupt service will be terminated.

#### 9. HALT and STOP mode

After the execution of HALT instruction, SH67P33 will enter HALT mode. In HALT mode, the CPU will stop operating; however, the peripheral circuit (timer) will keep operating.

After the execution of STOP instruction, SH67P33 will enter STOP mode.

In STOP mode, the entire chip (including oscillator) will stop operating.

In HALT mode, SH67P33 can be woken up if an interrupt occurs.

In STOP mode, SH67P33 can be woken up if a port interrupt occurs.

#### 10. Warm-up Timer

The SH67P33 has a built in oscillator warm-up timer to eliminate unstable state of initial oscillation when oscillator starts oscillating in the following conditions:

- (1) Power-on reset
- (2) Wake-up from STOP mode

The warm-up time interval (Fosc/8192 cycles of oscillator) is a follows:

- (1) Power-on reset interval is as long as the initial oscillator's frequency mode warm-up timer interval. When SH67P33 operates in 455K Hz frequency, the warm-up time interval is 18 ms.
- (2) 4MHz crystal oscillator wake-up:

When SH67P33 operates in 4 MHz frequency, the warm-up time interval is 2 ms.



#### 11. Low Power Detection (LPD)

The LPD function monitors the supply voltage and applies an internal reset in the micro-controller at battery replacement. If the applied circuit satisfies the following conditions, the LPD can be incorporated by the software control.

#### Functions of LPD Circuit:

The LPD circuit has the following functions:

Generates an internal reset signal when  $V_{DD} \le V_{LPD}$  (  $\approx 1.6V$ ).

Stops the oscillator operation and force the CPU to enter STOP mode when  $VDD \le VLPD$ . As  $VDD \le VLPD$ , the LPD reset will delay about 1ms before being triggered. If VDD goes back to VDD > VLPD, the system will cancel the LPD reset.

#### **LPD Control Register**

The LPD circuit is controlled by the software enable flag.

| Address | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Remarks                                                                                         |
|---------|------|------|------|------|-----|-------------------------------------------------------------------------------------------------|
| \$15    | LPD3 | LPD2 | LPD1 | LPD0 | W   | LPD Enable Control (LPD3 ~ 0):<br>1010: LPD Disable<br>Else: LPD Enable (Power-on initial 0000) |

#### 12. Watch Dog Timer

Watch dog timer is a 16-bit down-count counter, and its clock source is internal RC oscillator. The watchdog timer automatically generates a device reset when it overflows. To prevent it timing out and generating a device RESET condition, users should write bit3 of system register \$14 as "1" before timing-out. The WDT has a time-out period of approx. 16ms. WDT bit3 is watchdog timer overflow flag.

System Register \$1F (WDT)

| Address | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W | Remarks                                                   | Power ON |
|---------|-------|-------|-------|-------|-----|-----------------------------------------------------------|----------|
| \$14    | WDT   |       |       |       | R/W | Bit3: Watchdog timer reset/flag<br>(write 1 to reset WDT) | 1000     |

The  $\overline{\text{WDT}}$  bit is cleared only if the Watchdog Timer time-out occurred both in normal operation mode and in the HALT mode. The Watchdog Timer is cleared when the device wakes up from the STOP mode, regardless of the source of wake-up.



## **Initial State**

There are 3 types of system resets:

- 1. Power-on reset
- 2. Low Power Detection reset
- 3. Watchdog reset

| Hardware                                   | After power-on reset | After LPD reset | After WDT reset |
|--------------------------------------------|----------------------|-----------------|-----------------|
| Program counter                            | \$000                | \$000           | \$000           |
| CY                                         | Undefined            | Unchanged       | Unchanged       |
| Data memory                                | Undefined            | Unchanged       | Unchanged       |
| System register                            | Undefined            | Unchanged       | Unchanged       |
| AC                                         | Undefined            | Unchanged       | Unchanged       |
| Timer counter                              | 0                    | Unchanged       | Unchanged       |
| Timer load register                        | 0                    | Unchanged       | Unchanged       |
| LPD                                        | 0000                 | 0000            | Unchanged       |
| I/O ports                                  | Input                | Input           | Input           |
| PPULL                                      | 0                    | Unchanged       | Unchanged       |
| CPS2~0                                     | Undefined            | Unchanged       | Unchanged       |
| Carrier low level timer load data register | Undefined            | Unchanged       | Unchanged       |
| WDT                                        | 1                    | 1               | 0               |
| REMO                                       | 0                    | 0               | 0               |

## **OTP Option list**

- (a) Oscillator select
  - 0 = 4MHz Build in RC oscillator (default)
  - 1 = 455KHz Ceramic oscillator
- (b) Port interrupt source select
  - 0 = Port B,Port C interrupt (default)
  - 1 = Port B,Port C,Port D interrupt



#### **Instruction Set**

All instructions are one cycle and one-word instructions. The characteristics are memory-oriented operation. Arithmetic and Logical Instructions

## Accumulator Type

| Mnemonic     | Instruction Code    | Function                                       | Flag Change |
|--------------|---------------------|------------------------------------------------|-------------|
| ADC X (, B)  | 00000 0bbb xxx xxxx | $AC \leftarrow Mx + AC + CY$                   | CY          |
| ADCM X (, B) | 00000 1bbb xxx xxxx | $AC, Mx \leftarrow Mx + AC + CY$               | CY          |
| ADD X (, B)  | 00001 0bbb xxx xxxx | $AC \leftarrow Mx + AC$                        | CY          |
| ADDM X (, B) | 00001 1bbb xxx xxxx | $AC$ , $Mx \leftarrow Mx + AC$                 | CY          |
| SBC X (, B)  | 00010 0bbb xxx xxxx | $AC \leftarrow Mx + -AC + CY$                  | CY          |
| SBCM X (, B) | 00010 1bbb xxx xxxx | $AC, Mx \leftarrow Mx + -AC + CY$              | CY          |
| SUB X (, B)  | 00011 0bbb xxx xxxx | AC ← Mx + -AC + 1                              | CY          |
| SUBM X (, B) | 00011 1bbb xxx xxxx | $AC$ , $Mx \leftarrow Mx + -AC + 1$            | CY          |
| EOR X (, B)  | 00100 0bbb xxx xxxx | $AC  \leftarrow Mx \oplus AC$                  |             |
| EORM X (, B) | 00100 1bbb xxx xxxx | $AC, Mx \leftarrow Mx \oplus AC$               |             |
| OR X (, B)   | 00101 0bbb xxx xxxx | $AC \leftarrow Mx \mid AC$                     |             |
| ORM X (, B)  | 00101 1bbb xxx xxxx | $AC, Mx \leftarrow Mx \mid AC$                 |             |
| AND X (, B)  | 00110 0bbb xxx xxxx | AC ← Mx & AC                                   |             |
| ANDM X (,B)  | 00110 1bbb xxx xxxx | AC, Mx ← Mx & AC                               |             |
| CLID         | 11110 0000 000 0000 | $0 \rightarrow AC [3]; AC [0] \rightarrow CY;$ | CV          |
| SHR          | 11110 0000 000 0000 | AC shift right one bit                         | CY          |

## Immediate Type

| Mnem  | onic | Instruction Code    | Function                        | Flag Change |  |
|-------|------|---------------------|---------------------------------|-------------|--|
| ADI   | X, I | 01000 iiii xxx xxxx | AC ← Mx + I                     | CY          |  |
| ADIM  | X, I | 01001 iiii xxx xxxx | AC, Mx ← Mx + I                 | CY          |  |
| SBI   | X, I | 01010 iiii xxx xxxx | AC ← Mx + -l +1                 | CY          |  |
| SBIM  | X, I | 01011 iiii xxx xxxx | AC, Mx ← Mx + -I + 1            | CY          |  |
| EORIM | X, I | 01100 iiii xxx xxxx | AC, $Mx \leftarrow Mx \oplus I$ |             |  |
| ORIM  | X, I | 01101 iiii xxx xxxx | AC, Mx ← Mx I I                 |             |  |
| ANDIM | X, I | 01110 iiii xxx xxxx | AC, Mx ← Mx & I                 |             |  |

<sup>\*</sup> In the assembler ASM66 V1.0, EORIM mnemonic is EORI. However, EORI has the same operation identical with EORIM. The same is true for the ORIM with respect to ORI, and ANDIM with respect to ANDI.

## Decimal Adjust

| Mnemonic | Instruction Code    | Function                         | Flag Change |
|----------|---------------------|----------------------------------|-------------|
| DAA X    | 11001 0110 xxx xxxx | AC; Mx ← Decimal adjust for add. | CY          |
| DAS X    | 11001 1010 xxx xxxx | AC; Mx ← Decimal adjust for sub. | CY          |

## Transfer Instruction

| Mnemonic    | Instruction Code    | Function              | Flag Change |
|-------------|---------------------|-----------------------|-------------|
| LDA X (, B) | 00111 0bbb xxx xxxx | AC ← Mx               |             |
| STA X (, B) | 00111 1bbb xxx xxxx | Mx ← AC               |             |
| LDI X, I    | 01111 iiii xxx xxxx | AC, $Mx \leftarrow I$ |             |



## **Control Instruction**

| Mnemonic    | Instruction Code      | Function                                   | Flag Change |
|-------------|-----------------------|--------------------------------------------|-------------|
| BAZ X       | 10010 xxxx xxx xxxx   | $PC \leftarrow X \text{ if } AC = 0$       |             |
| BNZ X       | 10000 xxxx xxx xxxx   | $PC \leftarrow X \text{ if } AC \neq 0$    |             |
| BC X        | 10011 xxxx xxx xxxx   | PC ← X if CY = 1                           |             |
| BNC X       | 10001 xxxx xxx xxxx   | $PC \leftarrow X \text{ if } CY \neq 1$    |             |
| BA0 X       | 10100 xxxx xxx xxxx   | PC ← X if AC (0) = 1                       |             |
| BA1 X       | 10101 xxxx xxx xxxx   | PC ← X if AC (1) = 1                       |             |
| BA2 X       | 10110 xxxx xxx xxxx   | PC ← X if AC (2) = 1                       |             |
| BA3 X       | 10111 xxxx xxx xxxx   | PC ← X if AC (3) = 1                       |             |
| CALL X      | 11000 xxxx xxx xxxx   | ST ← CY; PC + 1                            |             |
| CALL X      | 11000 XXXX XXX XXX    | $PC \leftarrow X \text{ (Not include p)}$  |             |
| RTNW H; L   | 11010 000h hhh IIII   | PC $\leftarrow$ ST; TBR $\leftarrow$ hhhh; |             |
| IXIIVVII, E | 11010 000111111111111 | AC ←IIII                                   |             |
| RTNI        | 11010 1000 000 0000   | CY; PC ← ST                                | CY          |
| HALT        | 11011 0000 000 0000   |                                            |             |
| STOP        | 11011 1000 000 0000   |                                            |             |
| JMP X       | 1110p xxxx xxx xxxx   | PC ← X (Include p)                         |             |
| TJMP        | 11110 1111 111 1111   | PC ← (PC11-PC8) (TBR) (AC)                 |             |
| NOP         | 11111 1111 111 1111   | No Operation                               |             |

## Where:

| PC  | Program counter           | I        | Immediate data        |
|-----|---------------------------|----------|-----------------------|
| AC  | Accumulator               | <b>⊕</b> | Logical exclusive OR  |
| -AC | Complement of accumulator |          | Logical OR            |
| CY  | Carry flag                | &        | Logical AND           |
| Mx  | Data memory               | bbb      | RAM bank = 000        |
| Р   | ROM page = 0              |          |                       |
| ST  | Stack                     | TBR      | Table Branch Register |



## **Absolute Maximum Rating\***

DC Supply Voltage . . . . -0.3V to +6.0V Input Voltage . . . . -0.3V to VDD + 0.3V Operating Ambient Temperature . . . -10 $^{\circ}$ C to +70 $^{\circ}$ C Storage Temperature . . . -55 $^{\circ}$ C to +125 $^{\circ}$ C

## \*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (V<sub>DD</sub> = 3.0V, GND = 0V, T<sub>A</sub> = -10 to 70°C, Fosc = 4MHz, unless otherwise specified)

| Symbol | Parameter                | Min.      | Тур. | Max.      | Unit | Condition                                          |
|--------|--------------------------|-----------|------|-----------|------|----------------------------------------------------|
| VDD    | Operating Voltage        | 1.8       | 3.0  | 3.6       | V    |                                                    |
| ЮР     | Operating Current        |           | 0.3  | 1         | mA   | All output pins unload (Execute NOP instruction)   |
| ISB1   | HALT Current             |           | 200  |           | μА   | CPU in HALT mode; ALL output pins unload, LPD off  |
| ISB2   | STOP Current             |           |      | 1         | μА   | OSC STOP<br>ALL output pins unload, LPD off        |
| REML   | REM sink current         | 0.3       |      |           | mA   | VREM = 0.3V                                        |
| IREMH  | REM driving current      | -5        | -9   |           | mA   | VREM = 1V                                          |
| VIL    | Input Low Voltage        | GND       |      | VDD X 0.3 | V    | I/O ports, pins tri-state.                         |
| Vih    | Input High Voltage       | VDD X 0.7 |      | VDD       | V    | I/O Ports, pins tri-state                          |
| lін    | High-level Input Current |           |      | 0.2       | μА   | I/O ports; VI/o = 3.0V                             |
| lIL1   | Low-level Input Current  | -30       |      | -10       | μА   | I/O ports with pull-low; VI/O = VDD                |
| lIL2   | Low-level Input Current  |           |      | -0.2      | μА   | I/O ports without pull-low; V <sub>I/O</sub> = Vסם |
| Vон    | Output High Voltage      | VDD - 0.7 |      |           | V    | I/O ports, I <b>он</b> = -5.0mA                    |
| Vol    | Output Low Voltage       |           |      | GND + 0.6 | V    | I/O ports, Io∟ = 1mA                               |



## **LPD Circuitry** (TA = $-10^{\circ}$ C to $+70^{\circ}$ C)

| Symbol | Parameter            | Min. | Тур. | Max. | Unit | Condition |
|--------|----------------------|------|------|------|------|-----------|
| VLPD   | LPD-detected Voltage | 1.2  | 1.5  | 1.8  | V    |           |
| llpd   | LPD circuit current  |      | 2.0  | 3.5  | μΑ   |           |

# **AC Electrical Characteristics** (VDD = 3.0V, GND = 0V, TA = $25^{\circ}$ C, internal RC oscillator, unless otherwise specified)

| Symbol | Parameter             | Min. | Тур. | Max. | Unit | Conditions                                              |
|--------|-----------------------|------|------|------|------|---------------------------------------------------------|
| Tosc   | Oscillator Start time |      |      | 20   | ms   | Ceramic Oscillator = 455KHz                             |
| ∆F /F  | Frequency Stability   | -    | -    | 1    | %    | F(VDD) - F(3.0)  / F(3.0); VDD=2.0~3.6V                 |
| Fosc   | Frequency Variation   | 3.92 | 4    | 4.08 | MHz  | VDD=2.0 to 3.6V, Ta = $+5^{\circ}$ C to $+45^{\circ}$ C |



#### **Application Circuit (for reference only)**

## AP1:

## Remote Control (48 Keys)

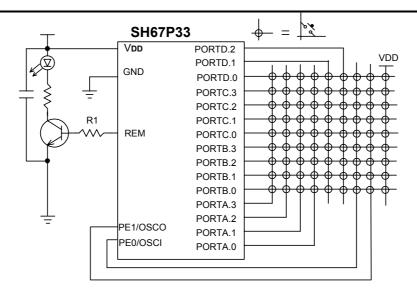
(1) Oscillator: Ceramic 455KHz(PORTE0,1 SHARED TO OSCI&OSCO)

(2) Port A, Port D1,PortD2:I/O Buffers(3) Port B, C and PortD0: Input Buffers

(4) R1 = 0 is possible, but the REM specification is revised to reduce power consumption

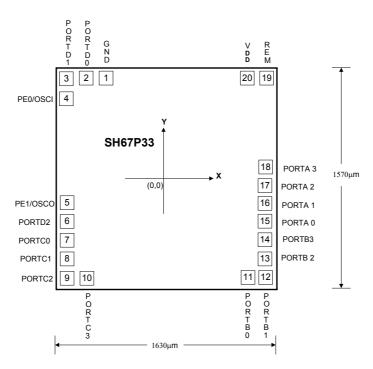
(5) Since PORTD.0 is input only PORTB or PORTC can be scanned out to detect PORTD.0 option.




#### AP2:

## Remote Control (81 Keys)

(1) Oscillator: BUILD-IN RC


(2) Port A, Port D1,PortD2,Port E: I/O Buffers (3) Port B, C and PortD0: Input Buffers







## **Bonding Diagram**

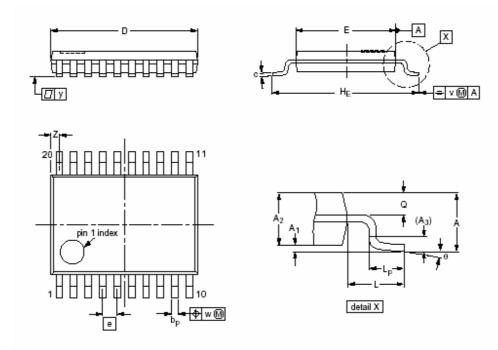


Substrate connects to GND.

| SH67P33 |             | unit: μm |          |
|---------|-------------|----------|----------|
| Pad No  | Designation | X        | <u> </u> |
| 1       | GND         | -484.00  | 712.50   |
| 2       | PORTD[0]    | -602.00  | 712.50   |
| 3       | PORTD[1]    | -722.00  | 712.50   |
| 4       | PORTE[0]    | -733.00  | 562.05   |
| 5       | PORTE[1]    | -728.00  | -180.65  |
| 6       | PORTD[2]    | -745.00  | -322.50  |
| 7       | PORTC[0]    | -745.00  | -437.50  |
| 8       | PORTC[1]    | -745.00  | -552.50  |
| 9       | PORTC[2]    | -734.00  | -707.50  |
| 10      | PORTC[3]    | -614.00  | -707.50  |
| 11      | PORTB[0]    | 614.00   | -707.50  |
| 12      | PORTB[1]    | 734.00   | -707.50  |
| 13      | PORTB[2]    | 745.00   | -552.50  |
| 14      | PORTB[3]    | 745.00   | -432.50  |
| 15      | PORTA[0]    | 745.00   | -312.50  |
| 16      | PORTA[1]    | 745.00   | -192.50  |
| 17      | PORTA[2]    | 745.00   | -72.50   |
| 18      | PORTA[3]    | 745.00   | 67.50    |
| 19      | REM         | 733.00   | 700.50   |
| 20      | VDD         | 618.00   | 700.50   |



## **Ordering Information**


| Part No. | Package   |
|----------|-----------|
| SH67P33H | CHIP FORM |
| SH67P33X | 20L TSSOP |
| SH67P33  | 20L DIP   |
| SH67P33M | 20L SOP   |

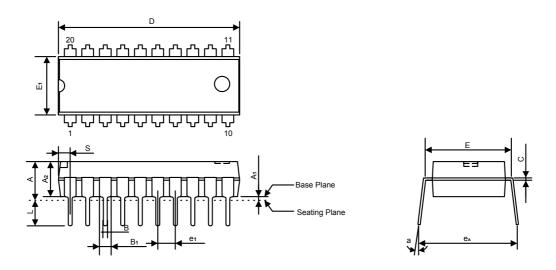


## **Package Informations**

## **TSSOP 20L Outline Dimensions**

unit: inches/mm




| Symbol _ | Dimensions in mm |      | Dimensions in inch |       |       |       |
|----------|------------------|------|--------------------|-------|-------|-------|
|          | MIN              | NOM  | MAX                | MIN   | NOM   | MAX   |
| Α        |                  |      | 1.1                |       |       | 0.044 |
| A1       | 0.05             |      | 0.15               | 0.002 |       | 0.006 |
| A2       | 0.80             |      | 0.95               | 0.032 |       | 0.038 |
| A3       |                  | 0.25 |                    |       | 0.01  |       |
| bp       | 0.19             |      | 0.30               | 0.008 |       | 0.012 |
| С        | 0.1              |      | 0.2                | 0.004 |       | 0.008 |
| D(1)     | 6.4              |      | 6.6                | 0.256 |       | 0.264 |
| E(2)     | 4.3              |      | 4.5                | 0.172 |       | 0.18  |
| е        |                  | 0.65 |                    |       | 0.026 |       |
| HE       | 6.2              |      | 6.6                | 0.248 |       | 0.264 |
| L        |                  | 1    |                    |       | 0.04  |       |
| Lp       | 0.5              |      | 0.75               | 0.02  |       | 0.03  |
| Q        | 0.3              |      | 0.4                | 0.012 |       | 0.016 |
| ٧        |                  | 0.2  |                    |       | 0.008 |       |
| W        |                  | 0.13 |                    |       | 0.005 |       |
| у        |                  | 0.1  |                    |       | 0.004 |       |
| Z(1)     | 0.2              |      | 0.5                | 0.008 |       | 0.02  |
| θ        | 0°               |      | 8°                 | 0°    |       | 8°    |

- Plastic or metal protrusions of 0.15 mm maximum per side are not included.
   Plastic interlead protrusions of 0.25 mm maximum per side are not included.

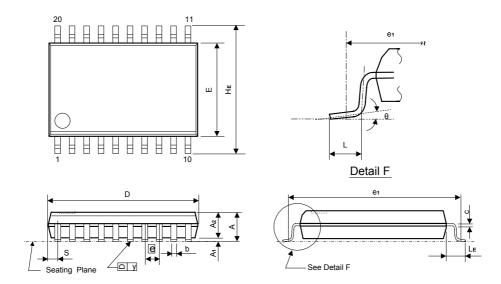


## **DIP 20L Outline Dimensions**

unit: inches/mm



| Symbol         | Dimensions in inches    | Dimensions in mm        |
|----------------|-------------------------|-------------------------|
| Α              | 0.175 Max.              | 4.45 Max.               |
| A <sub>1</sub> | 0.010 Min.              | 0.25 Min.               |
| A <sub>2</sub> | $0.130 \pm 0.010$       | $3.30 \pm 0.25$         |
| В              | 0.018 +0.004<br>-0.002  | 0.46 +0.10<br>-0.05     |
| B <sub>1</sub> | 0.060 +0.004<br>-0.002  | 1.52 +0.10<br>-0.05     |
| С              | 0.010 +0.004<br>-0.002  | 0.25 +0.10<br>-0.05     |
| D              | 1.026 Typ. (1.046 Max.) | 26.06 Typ. (26.57 Max.) |
| Е              | $0.300 \pm 0.010$       | $7.62 \pm 0.25$         |
| E <sub>1</sub> | 0.250 Typ. (0.262 Max.) | 6.35 Typ. (6.65 Max.)   |
| e <sub>1</sub> | $0.100 \pm 0.010$       | 2.54 ± 0.25             |
| L              | 0.130 ± 0.010           | 3.30 ± 0.25             |
| α              | 0° ~ 15°                | 0° ~ 15°                |
| e <sub>A</sub> | $0.345 \pm 0.035$       | 8.76 ± 0.89             |
| S              | 0.078 Max.              | 1.98 Max.               |


## Notes:

- 1. The maximum value of dimension D includes end flash.
- Dimension E<sub>1</sub> does not include resin fins.
   Dimension S includes end flash



## SOP 20L (W.B.) Outline Dimensions

unit: inches/mm



| Symbol     | Dimensions in inches   | Dimensions in mm    |
|------------|------------------------|---------------------|
| Α          | 0.106 Max.             | 2.69 Max.           |
| A1         | 0.004 Min.             | 0.10 Min.           |
| A2         | $0.092 \pm 0.005$      | $2.33\pm0.13$       |
| b          | 0.016 +0.004<br>-0.002 | 0.41 +0.10<br>-0.05 |
| С          | 0.010 +0.004<br>-0.002 | 0.25 +0.10<br>-0.05 |
| D          | 0.500 ± 0.02           | 12.80 ± 0.51        |
| Е          | $0.295 \pm 0.010$      | $7.49 \pm 0.25$     |
| е          | $0.050 \pm 0.006$      | 1.27 ± 0.15         |
| <b>e</b> 1 | 0.376 NOM.             | 9.50 NOM.           |
| HE         | $0.406 \pm 0.012$      | 10.31 ± 0.31        |
| L          | $0.032 \pm 0.008$      | $0.81 \pm 0.20$     |
| LE         | $0.055 \pm 0.008$      | 1.40 ± 0.20         |
| S          | 0.042 Max.             | 1.07 Max.           |
| у          | 0.004 Max.             | 0.10 Max.           |
| θ          | 0° ~ 10°               | 0° ~ 10°            |

## Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- Dimension e<sub>1</sub> is for PC Board surface mount pad pitch. Designer reference only.
   Dimension S includes end flash.





**Specification Revision History** 

| Version | Content                                                                                                                              | Date      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 0.2     | <ol> <li>Add bonding diagram</li> <li>Add pad location</li> <li>Add application circuit</li> <li>Add package informations</li> </ol> | May.2003  |
| 0.1     | Original                                                                                                                             | Jan. 2003 |