
HT46R47, HT46R22,

HT46R23, HT46R24

A/D Type MCU

Handbook

March 2005

Copyright � 2005 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan. No part of this publication

may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photo-

copying, recording, or otherwise without the prior written permission of HOLTEK SEMICONDUCTOR INC.

Contents

Part I Microcontroller Profile ... 1

Chapter 1 Hardware Structure ... 3

Introduction .. 3

Features ... 4

Technology Features ... 4

Kernel Features ... 4

Peripheral Features ... 4

Selection Table .. 5

Block Diagram ... 6

Pin Assignment .. 7

Pin Description ... 8

Absolute Maximum Ratings ... 12

D.C. Characteristics ... 12

A.C. Characteristics ... 14

System Architecture ... 15

Clocking and Pipelining ... 15

Program Counter ... 16

Stack ... 18

Arithmetic and Logic Unit � ALU ... 18

Program Memory ... 19

Organization .. 19

Special Vectors ... 20

Look-up Table .. 20

Table Program Example .. 21

Data Memory ... 22

Organization .. 22

General Purpose Data Memory .. 23

Special Purpose Data Memory ... 24

Contents

i

Special Function Registers .. 25

Indirect Addressing Registers � IAR, IAR0, IAR1 ... 25

Memory Pointers � MP, MP0, MP1 ... 25

Bank Pointer � BP ... 26

Accumulator � ACC ... 26

Program Counter Low Register � PCL ... 26

Look-up Table Registers � TBLP, TBLH .. 27

Status Register � STATUS .. 27

Interrupt Control Registers � INTC, INTC0, INTC1 ... 28

Timer/Event Counter Registers ... 28

Input/Output Ports and Control Registers ... 28

Pulse Width Modulator Registers � PWM, PWM0, PWM1, PWM2, PWM3 29

I2C Bus Registers � HADR, HCR, HSR, HDR ... 29

A/D Converter Registers � ADRL, ADRH, ADCR, ADSR 29

Input/Output Ports .. 29

Pull-high Resistors .. 30

Port A Wake-up ... 30

I/O Port Control Registers ... 30

Pin-shared Functions .. 30

Programming Considerations .. 34

Timer/Event Counters .. 34

Configuring the Timer/Event Counter Input Clock Source 35

Timer Registers � TMR, TMRL/TMRH, TMR0L/TMR0H, TMR1L/TMR1H 36

Timer Control Registers � TMRC, TMR0C, TMR1C ... 37

Configuring the Timer Mode .. 39

Configuring the Event Counter Mode .. 39

Configuring the Pulse Width Measurement Mode ... 40

Programmable Frequency Divider � PFD ... 41

Prescaler ... 42

I/O Interfacing .. 42

Programming Considerations .. 42

Pulse Width Modulator ... 42

6+2 PWM Mode .. 43

7+1 PWM Mode .. 44

PWM Output Control ... 45

Analog to Digital Converter .. 46

A/D Converter Data Registers � ADRL/ADRH .. 46

A/D Converter Control Register � ADCR .. 47

A/D Converter Clock Source Register � ACSR ... 49

A/D Input Pins ... 49

Summary of A/D Conversion Steps .. 50

A/D Transfer Function ... 52

I2C Bus Serial Interface ... 54

I2C Bus Slave Address Register � HADR ... 55

I2C Bus Input/Output Data Register � HDR ... 55

I2C Bus Control Register � HCR ... 55

I2C Bus Status Register � HSR ... 55

ii

A/D Type MCU

I2C Bus Communication .. 56

Interrupts .. 60

Interrupt Registers ... 60

Interrupt Priority ... 63

External Interrupt ... 64

Timer/Event Counter Interrupt ... 64

A/D Interrupt .. 64

I2C Interrupt ... 65

Programming Considerations .. 65

Reset and Initialization ... 65

Reset ... 65

Oscillator .. 72

System Clock Configurations .. 72

System Crystal/Ceramic Oscillator .. 72

System RC Oscillator .. 73

Watchdog Timer Oscillator .. 73

HALT and Wake-up in Power Down Mode .. 73

Watchdog Timer ... 74

Configuration Options .. 76

Application Circuits ...77

Part II Programming Language ... 81

Chapter 2 Instruction Set Introduction ... 83

Instruction Set .. 83

Instruction Timing .. 83

Moving and Transferring Data ... 84

Arithmetic Operations .. 84

Logical and Rotate Operations .. 84

Branches and Control Transfer ... 84

Bit Operations ... 84

Table Read Operations ... 85

Other Operations ... 85

Instruction Set Summary ... 85

Convention .. 85

Chapter 3 Instruction Definition .. 89

Chapter 4 Assembly Language and Cross Assembler .. 101

Notational Conventions .. 101

Statement Syntax .. 102

Name ... 102

Operation .. 102

Operand .. 102

Contents

iii

Comment ... 103

Assembly Directives .. 103

Conditional Assembly Directives ... 103

File Control Directives ... 104

Program Directives .. 105

Data Definition Directives .. 108

Macro Directives .. 110

Assembly Instructions .. 112

Name ... 112

Mnemonic .. 112

Operand, Operator and Expression ... 112

Miscellaneous ... 114

Forward References .. 114

Local Labels .. 114

Reserved Assembly Language Words .. 115

Cross Assembler Options .. 116

Assembly Listing File Format ... 116

Source Program Listing ... 116

Summary of Assembly ... 117

Miscellaneous .. 117

Part III Development Tools ... 119

Chapter 5 MCU Programming Tools .. 121

HT-IDE Development Environment .. 121

Holtek In-Circuit Emulator � HT-ICE .. 122

HT-ICE Interface Card ... 122

OTP Programmer... 123

OTP Adapter Card .. 123

System Configuration .. 123

HT-ICE Interface Card Settings...124

Installation .. 125

System Requirement ... 125

Hardware Installation .. 125

Software Installation .. 125

Chapter 6 Quick Start ... 131

Step 1 � Create a New Project .. 131

Step 2 � Add Source Program Files to the Project ... 131

Step 3 � Build the Project .. 131

Step 4 � Programming the OTP Device .. 131

Step 5 � Transmit Code to Holtek ... 132

iv

A/D Type MCU

Appendix ... 133

Appendix A Device Characteristic Graphics .. 135

Appendix B Package Information .. 145

Contents

v

vi

A/D Type MCU

Preface

Since the founding of the company, Holtek Semiconductor Inc. has concentrated much of its de-

sign efforts in the area of microcontroller development. Although supplying a wide range of semi-

conductor devices, the microcontroller category has always been a key product category within

the Holtek range, and one which will continue to expand as their devices increase in functionality

and maturity. By capitalizing on the substantial accumulated skills within its dedicated

microcontroller development department, Holtek has been able to release a comprehensive

range of high quality low-cost microcontroller devices for a wide range of application areas. Many

important applications need to process analog signals such as those which interface to external

sensors. All of these applications require analog to digital signal conversion by an A/D converter

before they can be processed by the microcontroller. To address these needs, Holtek has devel-

oped its range of A/D microcontrollers, which in addition to having all the features and functions of

the I/O range of devices, also include integrated multi-channel A/D converters of varying resolu-

tion and channel capacity. The inclusion of PWM functions and an I2C interface further enhance

the features and application possibilities of the A/D series of microcontrollers.

This handbook is divided into three parts for user convenience. Most details regarding general

datasheet information and device specification is located within Part I. Information related to

microcontroller programming such as device instruction set, instruction definition, and assembly

language directives is found within Part II. Part III relates to the Holtek range of Development Tools

where information can be found on their installation and use.

By compiling all relevant data together in one handbook, we hope users of the Holtek range of A/D

Type microcontroller devices will have at their fingertips a useful, complete and simple means to ef-

ficiently implement their microcontroller applications. Holtek�s efforts to combine information on de-

vice specifications, programming and development tools into one publication have produced a

handbook which with careful use by the user should result in trouble free designs and the maxi-

mum benefit being gained from the many features of Holtek microcontroller devices. We welcome

feedback and comments from our customers regarding further improvements.

Preface

vii

viii

A/D Type MCU

P a r t I

Microcontroller Profile

Part I Microcontroller Profile

1

2

A/D Type MCU

C h a p t e r 1

Hardware Structure

This section is the main datasheet section of the A/D Type microcontroller handbook and contains

all the parameters and information related to the hardware. The information contained provides de-

signers with details on all the main hardware features of the A/D Type microcontroller range which

together with the programming section contains the information to enable swift and successful im-

plementation of user microcontroller applications. By proper consultation of the relevant parts of

this section, users can ensure that they make the most efficient use of the flexible and

multi-function features within the A/D Type microcontroller series.

Introduction

The HT46R47/HT46C47, HT46R22/HT46C22, HT46R23/HT46C23 and HT46R24/HT46C24

form the series of 8-bit high performance RISC architecture microcontrollers, designed especially

for applications that interface directly to analog signals, such as those from sensors. All devices in-

clude an integrated multi-channel Analog to Digital Converter in addition to one or more Pulse

Width Modulation outputs. Device flexibility is enhanced with the usual features of the other

microcontroller range such as HALT and wake-up functions, oscillator options, programmable fre-

quency divider etc. These features combine to ensure applications require a minimum of external

components and therefore reduce overall product costs. Having the benefits of integrated A/D and

PWM functions, in addition to the advantages of low power consumption, high performance, I/O

flexibility, as well as low cost, these devices have the versatility to suit a wide range of application

possibilities such as sensor signal processing, motor driving, industrial control, consumer prod-

ucts, subsystem controllers, etc. Many features are common to all devices however, they differ in

areas such as I/O pin count, RAM and ROM capacity, timer number and size, A/D channels, PWM

outputs, etc.

The HT46R47, HT46R22, HT46R23 and HT46R24 are OTP devices offering the advantages of

easy and effective program updates, using the Holtek range of development and programming

tools. These devices provide the designer with the means for fast and low cost product develop-

ment cycles. However, for applications that are at a mature state in their design process, the

HT46C47, HT46C22, HT46C23 and HT46C24 mask version devices offer a complementary de-

vice for products with high volume and low cost demands. Fully pin and functionally compatible

with their OTP sister devices, such mask version devices provide the ideal substitute for products

which have gone beyond their development cycle and are facing cost down demands.

Chapter 1 Hardware Structure

3

1

Features

Technology Features

� High-performance RISC Architecture

� Low-power Fully Static CMOS Design

� Operating Voltage:

fSYS=4MHz: 2.2V~5.5V

fSYS=8MHz: 3.3V~5.5V

� Power Consumption:

2mA Typical at 5V 4MHz (for Crystal Oscillator with ADC Disabled)

Maximum of 1�A Standby Current at 3V with WDT Disabled

� Temperature Range:

Operating Temperature -40�C to 85�C (Industrial Grade)

Storage Temperature -50�C to 125�C

Kernel Features

� Program Memory:

2K�14 OTP/Mask ROM (HT46R47/HT46C47, HT46R22/HT46C22)

4K�15 OTP/Mask ROM (HT46R23/HT46C23)

8K�16 OTP/Mask ROM (HT46R24/HT46C24)

� Data Memory:

64�8 SRAM (HT46R47/HT46C47, HT46R22/HT46C22)

192�8 SRAM (HT46R23/HT46C23)

384�8 SRAM (HT46R24/HT46C24)

� Table Read Function

� Multi-level Hardware Stack:

6-level (HT46R47/HT46C47, HT46R22/HT46C22)

8-level (HT46R23/HT46C23)

16-level (HT46R24/HT46C24)

� Direct and Indirect Data Addressing Mode

� Bit Manipulation Instructions

� 63 Powerful Instructions

� Most Instructions Implemented in 1 Machine Cycle

Peripheral Features

� From 13 to 40 Bidirectional I/O with Pull-high Options

� Multi-channel 9 or 10-bit A/D Converter

� Pulse Width Modulator Outputs

� Port A Wake-up Options

� External Interrupt Input

� Event Counter Input

� Full Timer Functions with Prescaler and Interrupt

� Watchdog Timer (WDT)

4

A/D Type MCU

� HALT and Wake-up Feature for Power Saving Operation

� PFD Output

� I2C Interface (excluding HT46R47/HT46C47)

� On-chip Crystal and RC Oscillator

� Low Voltage Reset (LVR) Feature for Brown-out Protection

� Programming Interface with Code Protection

� Mask Version Devices Available for High Volume Production

� Full Suite of Supported Hardware and Software Tools Available

Selection Table

The series of A/D microcontrollers include a comprehensive range of features, some of which are

standard and some of which are device dependent. Most features are common to all devices, the

main feature distinguishing them are Program Memory, Data Memory capacity, I/O count, timer

functions, A/D channels and PWM outputs. To assist users in their selection of the most appropri-

ate device for their application, the following table, which summarizes the main features of each

device, is provided.

Part No. VDD
Program
Memory

Data
Memory

I/O Timer Interrupt I
2
C A/D PWM Stack

Package
Types

HT46R47
HT46C47

2.2V~
5.5V

2K�14 64�8 13 8-bit�1 3 � 9-bit�4 8-bit�1 6
18DIP,
18SOP

HT46R22
HT46C22

2.2V~
5.5V

2K�14 64�8 19 8-bit�1 4 	 9-bit�8 8-bit�1 6
24SKDIP,

24SOP

HT46R23
HT46C23

2.2V~
5.5V

4K�15 192x8

19

16-bit�1 4 	 10-bit�8

8-bit�1

8

24SKDIP,
24SOP

23 8-bit�2
28SKDIP,

28SOP

HT46R24
HT46C24

2.2V~
5.5V

8K�16 384�8

23

16-bit�2 5 	 10-bit�8

8-bit�2

16

28SKDIP,
28SOP

40 8-bit�4 48SSOP

Note Part numbers including
C
 are mask version devices while
R
 are OTP devices.

Chapter 1 Hardware Structure

5

Block Diagram

The following block diagram illustrates the main functional blocks of the A/D Type microcontroller

series of devices.

Note This block diagram represents the OTP devices, for the mask device there is no Device Pro-

gramming Circuitry. The HT46R47/HT46C47 does not contain an I2C interface. The Bank Pointer

only exists in the HT46R24/HT46C24.

6

A/D Type MCU

� � � � � �
� � � � � 	
 � �

�
 �
 � � � � � �
� �
 	 � � � � � � � � 	
 � �

� � �
 � � �
 � � �
� � � � � � �

� � �
 � � �
 � � �
� � � � �
 � �

� � �
� � � � � � 	
 � �

� 	
 	
� � � � �

�
�
�
��
�
�
��

�
�
�
�
�
�

� � � � �

� � � �
 � �

� � � � �

� � � ! � � "
� � � � �
 � �

� 	
 � # � � �
� � � � �

� � � �
 � $
% & �

� � � ! � � "
� � � � �
 � �

� � � � � ' � (�
� � � �
 � �

% � �) * � +
� 	 , � �

� � � � �
 � �

� � � � � 	 �
� � � � �

�
�
�
��
�
�
��

�
�
�
�
�
�

�
 	 �)

�
 	 �) � � � � �
 � �

� � � � � 	 �
� � � �
 � �

% � �) * � +
� 	 , � �
� � � �
 � �

� � � ! � � "
� � � � �
 � �

� � �
� � �
 �

� � - � � �
� � � � � 	 � � � � �

� � � � � �
 �

� � � ! � � � � 	
 � � �
� +
 � � �

� � � � � � � � 	 �
� � � � �

� %

� # � !
 � �

�

�

� � � ! � � "
� � � � �
 � �

� �
 � � � � +

� � � � � �

� . �
� � �

� � � - � �
 � �
� � � ! � � "
� � � � �
 � �

� � �� / �

0 	 �)
� � � �
 � �

Pin Assignment

Note The pin compatibility features of the microcontroller SKDIP/SOP packages allow for straightfor-

ward upgrading to devices of higher functionality with minimal changes to application hardware.

Chapter 1 Hardware Structure

7

� � 1 � � � �

� � 2 � � 3 �

� � 4

� � 5

� � � /

� � � 6

& � �

� 7 �

� � 8 � � � �

� � 9 � � . �

� � /

� � 6

� � 8

� 0 9 � � 3 9

� 0 / � � 3 /

� 0 6 � � 3 6

� 0 8 � � 3 8

& � �

6 :

6 5

6 4

6 2

6 1

6 9

6 /

6 6

6 8

6

/

9

1

2

4

5

:

;

� � � � � � � � � � � � � � �

	
 � �
 � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � �
 � � � � � � � � �

� 0 2 � � 3 2

� 0 1 � � 3 1

� � 9 � � . �

� � /

� � 6

� � 8

� 0 9 � � 3 9

� 0 / � � 3 /

� 0 6 � � 3 6

� 0 8 � � 3 8

& � �

� � 8

� 0 4 � � 3 4

� 0 5 � � 3 5

� � 1 � � � �

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� � � /

� � � 6

& � �

� 7 �

� � 8 � � � �

� � 6

/ 1

/ 9

/ /

/ 6

/ 8

6 ;

6 :

6 5

6 4

6 2

6 1

6 9

6

/

9

1

2

4

5

:

;

6 8

6 6

6 /

� 0 2 � � 3 2

� 0 1 � � 3 1

� � 9 � � . �

� � /

� � 6

� � 8

� 0 9 � � 3 9

� 0 / � � 3 /

� 0 6 � � 3 6

� 0 8 � � 3 8

& � �

� � 8

� 0 4 � � 3 4

� 0 5 � � 3 5

� � 1 � � � �

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� � � /

� � � 6

& � �

� 7 �

� � 8 � � � � 8

� � 6

/ 1

/ 9

/ /

/ 6

/ 8

6 ;

6 :

6 5

6 4

6 2

6 1

6 9

6

/

9

1

2

4

5

:

;

6 8

6 6

6 /

� � � � � � � � � � � � � � � �

� � � � � � � �
 � � � � � � � � �

� � � � � � � � � � � � � � � �

�
 � � � �
 � � � � � � � � �

/ :

/ 5

/ 4

/ 2

/ 1

/ 9

/ /

/ 6

/ 8

6 ;

6 :

6 5

6 4

6 2

6

/

9

1

2

4

5

:

;

6 8

6 6

6 /

6 9

6 1

� 0 2 � � 3 2

� 0 1 � � 3 1

� � 9 � � . �

� � /

� � 6

� � 8

� 0 9 � � 3 9

� 0 / � � 3 /

� 0 6 � � 3 6

� 0 8 � � 3 8

& � �

� � 8

� � 6

� � /

� 0 4 � � 3 4

� 0 5 � � 3 5

� � 1 � � � �

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� � � /

� � � 6

& � �

� 7 �

� � 6 � � � � 6

� � 8 � � � � 8

� � 1

� � 9

� � � � � � � � � � � � � � � �

�
 � � � � � � �

1 :

1 5

1 4

1 2

1 1

1 9

1 /

1 6

1 8

9 ;

9 :

9 5

9 4

9 2

9 1

9 9

9 /

9 6

9 8

/ ;

/ :

/ 5

/ 4

/ 2

6

/

9

1

2

4

5

:

;

6 8

6 6

6 /

6 9

6 1

6 2

6 4

6 5

6 :

6 ;

/ 8

/ 6

/ /

/ 9

/ 1

� 0 2 � � 3 2

� 0 1 � � 3 1

� � 9 � � . �

� � /

� � 6

� � 8

� 0 9 � � 3 9

� 0 / � � 3 /

� 0 6 � � 3 6

� 0 8 � � 3 8

3 �

� . 9

� . /

� . 6

� � 5

� � 4

� � 2

� � 1

& � �

� . 8

� � � 8

� � 8

� � 6

� � /

� 0 4 � � 3 4

� 0 5 � � 3 5

� � 1

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� . 1

� . 2

� . 4

� . 5

� � � /

� � � 6

& � �

� 7 �

� � � 6

� � 9 � � � � 9

� � / � � � � /

� � 6 � � � � 6

� � 8 � � � � 8

� � 5

� � 4

� � 2

� � 1

� � 9

� � � � � � � � � � � � � � � �

�
 � � � �
 � � � � � � � � �

/ :

/ 5

/ 4

/ 2

/ 1

/ 9

/ /

/ 6

/ 8

6 ;

6 :

6 5

6 4

6 2

6

/

9

1

2

4

5

:

;

6 8

6 6

6 /

6 9

6 1

� 0 2 � � 3 2

� 0 1 � � 3 1

� � 9 � � . �

� � /

� � 6

� � 8

� 0 9 � � 3 9

� 0 / � � 3 /

� 0 6 � � 3 6

� 0 8 � � 3 8

& � �

� � 8

� � 6

� � /

� 0 4 � � 3 4

� 0 5 � � 3 5

� � 1

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� � � /

� � � 6

& � �

� 7 �

� � 6 � � � � 6 � � � � 6

� � 8 � � � � 8

� � 1

� � 9

Pin Description

HT46R47/HT46C47

Pin Name I/O
Configuration

Option
Description

PA0~PA2

PA3/PFD

PA4/TMR

PA5/INT

PA6~PA7

I/O

Pull-high

Wake-up

PA3 or PFD

Bidirectional 8-bit input/output port. Each individual bit on this

port can be configured as a wake-up input by a configuration

option. Software instructions determine if the pin is a CMOS

output or Schmitt Trigger input. A configuration option deter-

mines which bits on the port have pull-high resistors. Pins

PA3, PA4 and PA5 are pin-shared with PFD, TMR and INT

respectively.

PB0/AN0

PB1/AN1

PB2/AN2

PB3/AN3

I/O Pull-high

Bidirectional 4-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines which bits on the port have

pull-high resistors. PB is pin-shared with the A/D input pins.

The A/D inputs are selected via software instructions. Once

selected as an A/D input, the I/O function and pull-high resis-

tor functions are disabled automatically.

PD0/PWM I/O
Pull-high

I/O or PWM

Bidirectional 1-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if this pin has a pull-high re-

sistor. The PWM output is pin-shared with pin PD0 selected

via configuration option.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or ex-

ternal crystal (determined by configuration option) for the in-

ternal system clock. For external RC system clock operation,

OSC2 is an output pin for 1/4 system clock.

RES I � Schmitt Trigger reset input. Active low.

VDD � � Positive power supply

VSS � � Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Each pin on each port can be individually configured to have a pull-high resistor.

8

A/D Type MCU

HT46R22/HT46C22

Pin Name I/O
Configuration

Option
Description

PA0~PA2

PA3/PFD

PA4/TMR

PA5/INT

PA6/SDA

PA7/SCL

I/O

Pull-high

Wake-up

PA3 or PFD

PA6/PA7 or

SDA/SCL

Bidirectional 8-bit input/output port. Each individual bit on

this port can be configured as a wake-up input by a configu-

ration option. Software instructions determine if the pin is a

CMOS output or Schmitt Trigger input. A configuration op-

tion determines which bits on the port have pull-high resis-

tors. Pins PA3, PA4 and PA5 are pin-shared with PFD,

TMR and INT respectively. Pins PA6 and PA7 are

pin-shared with SDA and SCL respectively and are used to

implement the I2C bus function.

PB0/AN0

PB1/AN1

PB2/AN2

PB3/AN3

PB4/AN4

PB5/AN5

PB6/AN6

PB7/AN7

I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions

determine if the pin is a CMOS output or Schmitt Trigger in-

put. A configuration option determines if all pins on the port

have pull-high resistors. PB is pin-shared with the A/D input

pins. The A/D inputs are selected via software instructions.

Once selected as an A/D input, the I/O function and

pull-high resistor functions are disabled automatically.

PC0~PC1 I/O Pull-high

Bidirectional 2-bit input/output port. Software instructions

determine if the pin is a CMOS output or Schmitt Trigger in-

put. A configuration option determines if both pins on this

port have pull-high resistors.

PD0/PWM I/O
Pull-high

I/O or PWM

Bidirectional 1-bit input/output port. Software instructions

determine if the pin is a CMOS output or Schmitt Trigger in-

put. A configuration option determines if this pin has a

pull-high resistor. The PWM output is pin-shared with pin

PD0 selected via configuration option.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or

external crystal (determined by configuration option) for the

internal system clock. For external RC system clock opera-

tion, OSC2 is an output pin for 1/4 system clock.

RES I � Schmitt Trigger reset input. Active low.

VDD � � Positive power supply

VSS � � Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins on PA can be selected to have a pull-high resistors. However, individual pins on

Port B and Port C cannot be selected to have pull-high resistors. If the pull-high configuration

is chosen for a particular PB or PC port, then all input pins on this port will be connected to

pull-high resistors.

Chapter 1 Hardware Structure

9

HT46R23/HT46C23

Pin Name I/O
Configuration

Option
Description

PA0~PA2

PA3/PFD

PA4/TMR

PA5/INT

PA6/SDA

PA7/SCL

I/O

Pull-high

Wake-up

PA3 or PFD

PA6/PA7 or

SDA/SCL

Bidirectional 8-bit input/output port. Each individual bit on this

port can be configured as a wake-up input by a configuration

option. Software instructions determine if the pin is a CMOS

output or Schmitt Trigger input. A configuration option deter-

mines which bits on the port have pull-high resistors. Pins PA3,

PA4 and PA5 are pin-shared with PFD, TMR and INT respec-

tively. Pins PA6 and PA7 are pin-shared with SDA and SCL re-

spectively and are used to implement the I2C bus function.

PB0/AN0

PB1/AN1

PB2/AN2

PB3/AN3

PB4/AN4

PB5/AN5

PB6/AN6

PB7/AN7

I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on the port have

pull-high resistors. PB is pin-shared with the A/D input pins.

The A/D inputs are selected via software instructions. Once

selected as an A/D input, the I/O function and pull-high resis-

tor functions are disabled automatically.

PC0~PC4 I/O Pull-high

Bidirectional 5-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if all pins on this port have

pull-high resistors.

PD0/PWM0

PD1/PWM1
I/O

Pull-high

I/O or PWM

Bidirectional 2-bit input/output port. Software instructions de-

termine if the pin is a CMOS output or Schmitt Trigger input. A

configuration option determines if both pins on this port have

pull-high resistors. The PWM0 output is pin-shared with pin

PD0 and the PWM1 output is pin-shared with PD1, selected

via configuration options.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or ex-

ternal crystal (determined by configuration option) for the in-

ternal system clock. For external RC system clock operation,

OSC2 is an output pin for 1/4 system clock.

RES I � Schmitt Trigger reset input. Active low.

VDD � � Positive power supply

VSS � � Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins on PA can be selected to have a pull-high resistors. However, individual pins on

Port B, Port C and Port D cannot be selected to have pull-high resistors. If the pull-high

configuration is chosen for a particular PB, PC or PD port, then all input pins on this port will

be connected to pull-high resistors.

3. The pin description table is based on the 28-pin device. Due to packaging limitations some pins

may not exist on the 24-pin package.

10

A/D Type MCU

HT46R24/HT46C24

Pin Name I/O
Configuration

Option
Description

PA0~PA2

PA3/PFD

PA4

PA5/INT

PA6/SDA

PA7/SCL

I/O

Pull-high

Wake-up

PA3 or PFD

PA6/PA7 or

SDA/SCL

Bidirectional 8-bit input/output port. Each individual bit on

this port can be configured as a wake-up input by a configu-

ration option. Software instructions determine if the pin is a

CMOS output or Schmitt Trigger input. A configuration op-

tion determines which bits on the port have pull-high resis-

tors. Pins PA3 and PA5 are pin-shared with PFD and INT

respectively. Pins PA6 and PA7 are pin-shared with SDA

and SCL respectively and are used to implement the I2C bus

function.

PB0/AN0

PB1/AN1

PB2/AN2

PB3/AN3

PB4/AN4

PB5/AN5

PB6/AN6

PB7/AN7

I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions

determine if the pin is a CMOS output or Schmitt Trigger in-

put. A configuration option determines which bits on the port

have pull-high resistors. PB is pin-shared with the A/D input

pins. The A/D inputs are selected via software instructions.

Once selected as an A/D input, the I/O function and

pull-high resistor functions are disabled automatically.

PC0~PC7 I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions

determine if the pin is a CMOS output or Schmitt Trigger in-

put. A configuration option determines if all pins on this port

have pull-high resistors.

PD0/PWM0

PD1/PWM1

PD2/PWM2

PD3/PWM3

PD4~PD7

I/O
Pull-high

I/O or PWM

Bidirectional 8-bit input/output port. Software instructions

determine if the pin is a CMOS output or Schmitt Trigger in-

put. A configuration option determines if all pins on this port

have pull-high resistors. The PWM0/PWM1/PWM2 and

PWM3 output pins are pin-shared with pins PD0/PD1/PD2

and PD3 respectively, selected via configuration options.

PF0~PF7 I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions

determine if the pin is a CMOS output or Schmitt Trigger in-

put. A configuration option determines if all pins on this port

have pull-high resistors.

TMR0 I �
Timer/Event Counter 0 Schmitt Trigger input. No pull-high

resistor connected.

TMR1 I �
Timer/Event Counter 1 Schmitt Trigger input. No pull-high

resistor connected.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or

external crystal (determined by configuration option) for the

internal system clock. For external RC system clock opera-

tion, OSC2 is an output pin for 1/4 system clock.

RES I � Schmitt Trigger reset input. Active low.

VDD � � Positive power supply

VSS � � Negative power supply, ground

Chapter 1 Hardware Structure

11

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins on PA and PB can be selected to have pull-high resistors. However, individual

pins on Port C, Port D and Port F cannot be selected to have pull-high resistors. If the pull-high

configuration is chosen for a particular PC, PD or PF port, then all input pins on the

corresponding port will have pull-high resistors connected.

3. The pin description table is based on the 48-pin package. Due to packaging limitations some

I/O pins may not exist on the 28-pin package. The TMR0 external pin is not available on the

28-pin package. The TMR1 pin is available on the 28-pin package as the pin-shared

PD1/PWM1/TMR1.

Absolute Maximum Ratings

Supply Voltage...VSS�0.3V to VSS+6.0V

Input Voltage ...VSS�0.3V to VDD+0.3V

Storage Temperature...�50�C to 125�C

Operating Temperature..�40�C to 85�C

These are stress ratings only. Stresses exceeding the range specified under Absolute Maximum

Ratings may cause substantial damage to the device. Functional operation of this device at other

conditions beyond those listed in the specification is not implied and prolonged exposure to ex-

treme conditions may affect device reliability.

D.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage
� fSYS=4MHz 2.2 � 5.5 V

� fSYS=8MHz 3.3 � 5.5 V

IDD1
Operating Current

(Crystal OSC)

3V No load,

fSYS=4MHz

ADC off

� 0.6 1.5 mA

5V � 2 4 mA

IDD2
Operating Current

(RC OSC)

3V No load,

fSYS=4MHz

ADC off

� 0.8 1.5 mA

5V � 2.5 4 mA

IDD3
Operating Current

(Crystal OSC, RC OSC)
5V

No load,

fSYS=8MHz

ADC off
� 4 8 mA

ISTB1
Standby Current

(WDT Enabled)

3V No load,

system HALT

� � 5 �A

5V � � 10 �A

ISTB2
Standby Current

(WDT and A/D Disabled)

3V No load,

system HALT

� � 1 �A

5V � � 2 �A

A/D Type MCU

12

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VIL1
Input Low Voltage for I/O Ports,

TMR, TMR0, TMR1, INT
� � 0 � 0.3VDD V

VIH1
Input High Voltage for I/O Ports,

TMR, TMR0, TMR1, INT
� � 0.7VDD � VDD V

VIL2 Input Low Voltage (RES) � � 0 � 0.4VDD V

VIH2 Input High Voltage (RES) � � 0.9VDD � VDD V

VLVR Low Voltage Reset � � 2.7 3 3.3 V

IOL I/O Port Sink Current
3V VOL=0.1VDD 4 8 � mA

5V VOL=0.1VDD 10 20 � mA

IOH I/O Port Source Current
3V VOH=0.9VDD �2 �4 � mA

5V VOH=0.9VDD �5 �10 � mA

RPH Pull-high Resistance
3V � 20 60 100 k�

5V � 10 30 50 k�

VAD A/D Input Voltage � � 0 � VDD V

EAD
A/D Conversion Integral

Non-Linearity Error
� � � �0.5 �1 LSB

IADC
Additional Power Consumption

if A/D Converter is Used

3V
�

� 0.5 1 mA

5V � 1.5 3 mA

Chapter 1 Hardware Structure

13

A.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock
� 2.2V~5.5V 400 � 4000 kHz

� 3.3V~5.5V 400 � 8000 kHz

fTIMER
Timer I/P Frequency

(TMR)

� 2.2V~5.5V 0 � 4000 kHz

� 3.3V~5.5V 0 � 8000 kHz

tWDTOSC Watchdog Oscillator Period
3V � 45 90 180 �s

5V � 32 65 130 �s

tRES
External Reset Low Pulse

Width
� � 1 � � �s

tSST
System Start-up Timer

Period
� Wake-up from HALT � 1024 � *tSYS

tLVR Low Voltage Width to Reset � � 1 � � ms

tINT Interrupt Pulse Width � � 1 � � �s

tAD A/D Clock Period � � 1 � � �s

tADC A/D Conversion Time � � � 76 � tAD

tADCS A/D Sampling Time � � � 32 � tAD

tIIC I2C Bus Clock Period �
Connect to external

pull-high resistor 2k�
64 � � *tSYS

*tSYS= 1/fSYS

14

A/D Type MCU

System Architecture

A key factor in the high performance features of the Holtek range of A/D Type microcontrollers is at-

tributed to the internal system architecture. The range of devices take advantage of the usual fea-

tures found within RISC microcontrollers providing increased speed of operation and enhanced

performance. The pipelining scheme is implemented in such a way that instruction fetching and in-

struction execution are overlapped, hence instructions are effectively executed in one cycle, with

the exception of branch or call instructions. An 8-bit wide ALU is used in practically all operations

of the instruction set. It carries out arithmetic operations, logic operations, rotation, increment, dec-

rement, branch decisions, etc. The internal data path is simplified by moving data through the Ac-

cumulator and the ALU. Certain internal registers are implemented in the Data Memory and can

be directly or indirectly addressed. The simple addressing methods of these registers along with

additional architectural features ensure that a minimum of external components is required to pro-

vide a functional I/O and A/D control system with maximum reliability and flexibility. This makes

these devices suitable for low cost, high-volume production for controller applications requiring

from 2K up to 8K words of program memory and from 64 to 384 bytes of data storage.

Clocking and Pipelining

The main system clock, derived from either a Crystal/Resonator or RC oscillator is subdivided into

four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at

the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4

clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms

one instruction cycle. Although the fetching and execution of instructions takes place in consecu-

tive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are

effectively executed in one instruction cycle. The exception to this are instructions where the con-

tents of the Program Counter are changed, such as subroutine calls or jumps, in which case the in-

struction will take one more instruction cycle to execute.

Note When the RC oscillator is used, OSC2 is freed for use as a T1 phase clock synchronizing pin. This

T1 phase clock has a frequency of fSYS/4 with a 1:3 high/low duty cycle.

Chapter 1 Hardware Structure

15

. �
 � # � � � �
 " � ' � � (

7 < � � �
 � � � � �
 " � ' � � * 6 (. �
 � # � � � �
 " � ' � � = 6 (

7 < � � �
 � � � � �
 " � ' � � (. �
 � # � � � �
 " � ' � � = / (

7 < � � �
 � � � � �
 " � ' � � = 6 (

� � � � = 6 � � = /

� � � � � � 	
 � � � � � � �)
' �
 �
 � � � � � � �) (

� # 	 � � � � � � �) � � 6

� � � � � 	 � � � � � �
 � �

� # 	 � � � � � � �) � � /

� # 	 � � � � � � �) � � 9

� # 	 � � � � � � �) � � 1

� � + � � � � � � �

System Clocking and Pipelining

For instructions involving branches, such as jump or call instructions, two machine cycles are re-

quired to complete instruction execution. An extra cycle is required as the program takes one cy-

cle to first obtain the actual jump or call address and then another cycle to actually execute the

branch. The requirement for this extra cycle should be taken into account by programmers in tim-

ing sensitive applications

Program Counter

During program execution, the Program Counter is used to keep track of the address of the next in-

struction to be executed. It is automatically incremented by one each time an instruction is exe-

cuted except for instructions such as JMP or CALL that demand a jump to a non-consecutive

Program Memory address. For the A/D series of microcontrollers, note that the Program Counter

width varies with the Program Memory capacity depending upon which device is selected. How-

ever, it must be noted that only the lower 8 bits, known as the Program Counter Low Register, are

directly addressable by user.

When executing instructions requiring jumps to non-consecutive addresses such as a jump in-

struction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control

by loading the required address into the Program Counter. For conditional skip instructions, once

the condition has been met, the next instruction, which has already been fetched during the pres-

ent instruction execution, is discarded and a dummy cycle takes its place while the correct instruc-

tion is obtained.

The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is

available for program control and is a readable and writable register. By transferring data directly

into this register, a short program jump can be executed directly, however, as only this low byte is

available for manipulation, the jumps are limited to the present page of memory, that is 256 loca-

tions. When such program jumps are executed it should also be noted that a dummy cycle will be

inserted.

Note The lower byte of the Program Counter is fully accessible under program control. The use of the

PCL might cause program branching, so an extra cycle is needed to pre-fetch. Further information

on the PCL register can be found in the Special Function Register section.

16

A/D Type MCU

. �
 � # � � � �
 " � 6 7 < � � �
 � � � � �
 " � 6

. �
 � # � � � �
 " � /

. � � � # � � � + � � � � �

6

/

9

1

2

4 � 7 % � > ?

� � & � � @ A 6 / B C

� � % % � � 7 % � >

� � % � A 6 / B C

?

?

3 � �

7 < � � �
 � � � � �
 " � /

. �
 � # � � � �
 " � 9

. �
 � # � � � �
 " � 4 7 < � � �
 � � � � �
 " � 4

. �
 � # � � � �
 " � 5

Mode
Program Counter Bits

b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0 0

External Interrupt 0 0 0 0 0 0 0 0 0 0 1 0 0

Timer/Event Counter 0 Overflow 0 0 0 0 0 0 0 0 0 1 0 0 0

Timer/Event Counter 1 Overflow
(HT46R24/HT46C24 only)

0 0 0 0 0 0 0 0 0 1 1 0 0

A/D Converter Interrupt
(except HT46R24/HT46C24)

0 0 0 0 0 0 0 0 0 1 1 0 0

A/D Converter Interrupt
(HT46R24/HT46C24 only)

0 0 0 0 0 0 0 0 1 0 0 0 0

I2C Bus Interrupt
(except HT46R24/HT46C24)

0 0 0 0 0 0 0 0 1 0 0 0 0

I2C Bus Interrupt
(HT46R24/HT46C24 only)

0 0 0 0 0 0 0 0 1 0 1 0 0

Skip Program Counter + 2

Loading PCL PC12 PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #12 #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Note 1. PC12~PC8: Current Program Counter bits

2. @7~@0: PCL bits

3. #12~#0: Instruction code bits

4. S12~S0: Stack register bits

5. For the HT46R24/HT46C24, the Program Counter is 13 bits wide, i.e. from b12~b0.

6. For the HT46R23/HT46C23, since its Program Counter is 12 bits wide, the b12 column in the

table is not applicable.

7. For the HT46R47/HT46C47, HT46R22/HT46C22, since its Program Counter is 11 bits wide,

the b11 and b12 columns in the table are not applicable.

8. The Timer/Event Counter 1 Overflow row is available only for the HT46R24/HT46C24.

9. For the HT46R47/HT46C47, HT46R22/HT46C22 and HT46R23/HT46C23 the Timer/Event

Counter 0 represents the single timer, known as TMR.

Chapter 1 Hardware Structure

17

Stack

This is a special part of the memory which is used to save the contents of the Program Counter

only. The stack can have between 6, 8 or 16 levels depending upon which device is selected and is

neither part of the data nor part of the program space, and is neither readable nor writable. The acti-

vated level is indexed by the stack pointer (SP) and is neither readable nor writeable. At a subrou-

tine call or interrupt acknowledge signal, the contents of the Program Counter are pushed onto the

stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction (RET or

RETI), the Program Counter is restored to its previous value from the stack. After a chip reset, the

SP will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded

but the acknowledge signal will be inhibited. When the stack pointer is decremented (by RET or

RETI), the interrupt will be serviced. This feature prevents stack overflow allowing the program-

mer to use the structure more easily. However, when the stack is full, a CALL subroutine instruc-

tion can still be executed which will result in a stack overflow. Precautions should be taken to avoid

such cases which might cause unpredictable program branching.

Note 1. For the HT46R47/HT46C47 and HT46R22/HT46C22, N=6, i.e. 6 levels of stack available.

2. For the HT46R23/HT46C23, N=8, i.e. 8 levels of stack available.

3. For the HT46R24/HT46C24, N=16, i.e. 16 levels of stack available.

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic

and logic operations of the instruction set. Connected to the main microcontroller data bus, the

ALU receives related instruction codes and performs the required arithmetic or logical operations

after which the result will be placed in the specified register. As these ALU calculation or opera-

tions may result in carry, borrow or other status changes, the status register will be correspond-

ingly updated to reflect these changes. The ALU supports the following functions:

� Arithmetic operations ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA

� Logic operations AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

A/D Type MCU

18

� � � � � 	 � � � � � �
 � �

�
 	 �) � % � - � � � 6

�
 	 �) � % � - � � � /

�
 	 �) � % � - � � � 9

�
 	 �) � % � - � � � 3

� � � � � 	 �
� � � � �

� � + � � ! � � � � � D

�
 	 �)
� � � �
 � �

0 �

 � � � � ! � � � � � D

Program Memory

The Program Memory is the location where the user code or program is stored. For

microcontrollers, two types of Program Memory are usually supplied. The first type is the One-

Time Programmable (OTP) Memory where users can program their application code into the de-

vice. Devices with OTP memory are denoted by having an
R
 within their device name. By using

the appropriate programming tools, OTP devices offer users the flexibility to freely develop their

applications which may be useful during debug or for products requiring frequent upgrades or pro-

gram changes. OTP devices are also applicable for use in applications that require low or medium

volume production runs. The other type of memory is the mask ROM memory, denoted by having

a
C
 within the device name. These devices offer the most cost effective solutions for high volume

products.

Organization

The Program Memory has a capacity of 2K by 14 to 8K by 16 bits depending upon which device is

selected. The Program Memory is addressed by the Program Counter and also contains data, ta-

ble information and interrupt entries. Table data, which can be setup in any location within the Pro-

gram Memory, is addressed by separate table pointer registers.

The following diagram shows the Program Memory for the A/D Type microcontroller series.

Chapter 1 Hardware Structure

19

3 �
 � � � + � � � � �
 � �

6 4 � , �
 �6 2 � , �
 �6 1 � , �
 �6 1 � , �
 �

9 . . B
1 8 8 B

5 . . B
: 8 8 B

. . . B
6 8 8 8 B

6 . . . B

8 6 1 B
� / � � 0 � �

� �
 � � � � +
 � & � �
 � �

� / � � 0 � �
� �
 � � � � +
 � & � �
 � �

� / � � 0 � �
� �
 � � � � +
 � & � �
 � �

� � � � � � � - � �
 � �
� �
 � � � � +
 � & � �
 � �

� � �
 � 	 � � E 	
 � � �
& � �
 � �

7 <
 � � � 	 �
� �
 � � � � +
 � & � �
 � �

� � � � � � � � � �
 � � � 8
� �
 � � � � +
 � & � �
 � �

� � �
 � 	 � � E 	
 � � �
& � �
 � �

7 <
 � � � 	 �
� �
 � � � � +
 � & � �
 � �

� � �
 � 	 � � E 	
 � � �
& � �
 � �

7 <
 � � � 	 �
� �
 � � � � +
 � & � �
 � �

� � � � � � � � � �
 � �
� �
 � � � � +
 � & � �
 � �

� � �
 � 	 � � E 	
 � � �
& � �
 � �

7 <
 � � � 	 �
� �
 � � � � +
 � & � �
 � �

� � � � � � � � � �
 � �
� �
 � � � � +
 � & � �
 � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � � � � �
 � � � 6
� �
 � � � � +
 � & � �
 � �

� � � � � � � - � �
 � �
� �
 � � � � +
 � & � �
 � �

� � � � � � � - � �
 � �
� �
 � � � � +
 � & � �
 � �

� � � � � � � - � �
 � �
� �
 � � � � +
 � & � �
 � �

� � � � � � � � � �
 � �
� �
 � � � � +
 � & � �
 � �

8 8 8 B

8 8 1 B

8 8 : B

8 8 � B

8 6 8 B

Special Vectors

Within the Program Memory, certain locations are reserved for special usage such as reset and in-

terrupts.

� Location 000H

This vector is reserved for use by the chip reset for program initialization. After a chip reset is ini-

tiated, the program will jump to this location and begin execution.

� Location 004H

This vector is used by the external interrupt. If the external interrupt pin on the device goes low,

the program will jump to this location and begin execution if the external interrupt is enabled and

the stack is not full.

� Location 008H

This internal vector is used by the Timer/Event Counter. If a counter overflow occurs, the pro-

gram will jump to this location and begin execution if the timer interrupt is enabled and the stack

is not full. For the HT46R24/HT46C24 devices, which has dual timers, this timer is known as

Timer/Event Counter 0 or TMR0, for the other devices the timer is known as TMR.

� Location 00CH

With the exception of the HT46R24/HT46C24 devices, this internal vector is used by the A/D

converter. When an A/D conversion cycle is complete, the program will jump to this location and

begin execution if the A/D interrupt is enabled and the stack is not full. For the

HT46R24/HT46C24 devices, this internal vector is used by its Timer/Event Counter 1. If a TMR1

counter overflow occurs, the program will jump to this location and begin execution if the internal

interrupt is enabled and the stack is not full.

� Location 010H

With the exception of the HT46R47/HT46C47 and HT46R24/HT46C24 devices, this internal

vector is used by the I2C bus interface. When the I2C bus requires data transfer, the program will

jump to this location and begin execution if the I2C interrupt is enabled and the stack is not full.

For the HT46R24/HT46C24 devices this internal vector is used by its A/D converter interrupt.

When the A/D conversion cycle in the HT46R24/HT46C24 is complete, the program will jump to

this location and begin execution if the A/D interrupt is enabled and the stack is not full.

� Location 014H

This vector, only available for the HT46R24/HT46C24 devices, is used by its I2C bus interface.

When the I2C bus of the HT46R24/HT46C24 requires data transfer, the program will jump to this

location and begin execution if the I2C interrupt is enabled and the stack is not full.

Look-up Table

Any location within the Program Memory can be defined as a look-up table where programmers

can store fixed data. To use the look-up table, the table pointer must first be setup by placing the

lower-order address of the look-up data to be retrieved in the Table Pointer Register TBLP. This

register defines the lower 8-bit address of the look-up table. After setting up the table pointer, the

table data can be retrieved from the current Program Memory page or last Program Memory page

using the
TABRDC [m]
 or
TABRDL [m]
 instructions respectively. When these instructions are

executed, the lower order table byte from the Program Memory will be transferred to the user de-

fined Data Memory register [m] as specified in the instruction. The higher order table data byte

from the Program Memory will be transferred to the TBLH special register. Any unused bits in this

transferred higher order byte will be read as
0
.

20

A/D Type MCU

The following diagram illustrates the addressing/data flow of the look-up table:

Table Program Example

The following example shows how the table pointer and table data is defined and retrieved from

the HT46R47 A/D microcontroller. This example uses raw table data located in the last page which

is stored there using the ORG statement. The value at this ORG statement is
700
 hex which re-

fers to the start address of the last page within the 2K Program Memory of the HT46R47

microcontroller. The table pointer is setup here to have an initial value of 06 hex.

This will ensure that the first data read from the data table will be at the Program Memory address

706 hex or 6 locations after the start of the last page. Note that the value for the table pointer is ref-

erenced to the first address of the present page if the
TABRDC [m]
 instruction is being used. The

high byte of the table data which in this case is equal to zero will be transferred to the TBLH regis-

ter automatically when the
TABRDL [m]
 instruction is executed.

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialize table pointer - note that this address
; is referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl
; data at prog. memory address 706H transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2
; data at prog.memory address 705H transferred to
; tempreg2 and TBLH
; in this example the data
1A
 is transferred to
; tempreg1 and data
0F
 to register tempreg2
; the value
0
 will be transferred to the high byte
; register TBLH

:
:

org 700h ; sets initial address of last page (for HT46R47)

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

Chapter 1 Hardware Structure

21

� � � � � 	 � �
� � � � �

� � � � � � 	 � � � � � �
 � �
� � � � � � � # � � # � ,

 �

� 0 % �

� 0 % B � + � � � ! � � � � ,
 � A � C

B � � # � ,

 � � � ! �
 	 , � � � � � �
 � �
 � % � F � ,

 � � � ! �
 	 , � � � � � �
 � �
 �

Because the TBLH register is a read-only register and cannot be restored, care should be taken to

ensure its protection if both the main routine and Interrupt Service Routine use table read instruc-

tions. If using the table read instructions, the Interrupt Service Routines may change the value of

the TBLH and subsequently cause errors if used again by the main routine. As a rule it is recom-

mended that simultaneous use of the table read instructions should be avoided. However, in situa-

tions where simultaneous use cannot be avoided, the interrupts should be disabled prior to the

execution of any main routine table-read instructions. Note that all table related instructions re-

quire two instruction cycles to complete their operation.

Instruction
Table Location Bits

b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

TABRDC [m] PC12 PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Note 1. PC12~PC8: Current Program Counter bits

2. @7~@0: Table Pointer TBLP bits

3. For the HT46R24/HT46C24, the Table address location is 13 bits, i.e. from b12~b0.

4. For the HT46R23/HT46C23, the Table address location is 12 bits, i.e. from b11~b0.

5. For the HT46R47/HT46C47 and HT46R22/HT46C22, the Table address location is 11 bits, i.e.

from b10~b0.

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where

temporary information is stored. Divided into two sections, the first of these is an area of RAM

where special function registers are located. These registers have fixed locations and are neces-

sary for correct operation of the device. Many of these registers can be read from and written to di-

rectly under program control, however, some remain protected from user manipulation. The

second area of Data Memory is reserved for general purpose use. All locations within this area are

read and write accessible under program control.

Organization

The two sections of Data Memory, the Special Purpose and General Purpose Data Memory are lo-

cated at consecutive locations. All are implemented in RAM and are 8 bits wide but the length of

each memory section is dictated by the type of microcontroller chosen. The start address of the

Data Memory for all devices is the address 00H. The last Data Memory address is 7FH for the

HT46R47/HT46C47 and HT46R22/HT46C22 devices, and FFH for the HT46R23/HT46C23 and

HT46R24/HT46C24 devices. Registers which are common to all microcontrollers, such as ACC,

PCL etc., have the same Data Memory address.

22

A/D Type MCU

Note Most of the Data Memory bits can be directly manipulated using the
SET [m].i
 and
CLR [m].i

with the exception of a few dedicated bits. The Data Memory can also be accessed through the

memory pointer register MP.

General Purpose Data Memory

All microcontroller programs require an area of read/write memory where temporary data can be

stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose

Data Memory. This area of Data Memory is fully accessible by the user program for both read and

write operations. By using the
SET [m].i
 and
CLR [m].i
 instructions, individual bits can be set or

reset under program control, giving the user a large range of flexibility for bit manipulation in the

Data Memory.

Note The 384 bytes of General Purpose Data Memory in the HT46R24/HT46C24 are stored in two indi-

vidual memory banks. Before reading from or writing to the General Purpose Data Memory it is es-

sential to first ensure that the correct Data Memory bank is selected by setting up the Bank

Pointer. Bank 1 can only be addressed indirectly using the memory pointer MP1 and indirect ad-

dressing register IAR1.

Chapter 1 Hardware Structure

23

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

1 8 B

5 . B

1 8 B

: 8 B
5 . B

1 8 B

. . B

1 8 B

. . B

5 . B
: 8 B
5 . B

0 	 �) � 8
0 	 �) � 6

� � � � � � �
� � � � � � �

� � � � � 	 � � � � � + � � �
� 	
 	 � � � � � �

� + � � � 	 � � � � � + � � �
� 	
 	 � � � � � �

8 8 B

1 8 B

5 . B � . . B

9 . B

Special Purpose Data Memory

This area of Data Memory is where registers, necessary for the correct operation of the

microcontroller, are stored. Most of the registers are both readable and writable but some are pro-

tected and are readable only, the details of which are located under the relevant Special Function

Register section. Note that for locations that are unused, any read instruction to these addresses

will return the value
00H
.

24

A/D Type MCU

8 8 B

8 6 B

8 / B

8 9 B

8 1 B

8 2 B

8 4 B

8 5 B

8 : B

8 ; B

8 � B

8 0 B

8 � B

8 � B

8 7 B

8 . B

6 8 B

6 6 B

6 / B

6 9 B

6 1 B

6 2 B

6 4 B

6 5 B

6 : B

6 ; B

6 � B

6 0 B

6 � B

6 � B

6 7 B

6 . B

/ 8 B

/ 6 B

/ / B

/ 9 B

/ 1 B

/ 2 B

/ 4 B

/ 5 B

/ : B

/ ; B

9 . B

? � � � � � �

� � 	 � � 	 � � G 8 8 G

� � �

� �

� � �

� � %

� 0 % �

� 0 % B

� � � � �

� 3 � �

� � �

� � � �

� �

� � �

� 0

� 0 �

� �

� � �

� � �

� � � %

� � � B

� � � �

� � � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � � 8

� � 8

� � � 6

� � 6

� � �

� � %

� 0 % �

� 0 % B

� � � � �

� 3 � � 8

� � � B

� � � %

� � � �

� �

� � �

� 0

� 0 �

� �

� � �

� �

� � �

� � � 8

� � � 6

� 3 � � 6

B � � �

B � �

B � �

B � �

� � � %

� � � B

� � � �

� � � �

� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �

� � �

� �

� � �

� � %

� 0 % �

� 0 % B

� � � � �

� 3 � � 8

� � �

� � � �

� �

� � �

� 0

� 0 �

� �

� � �

� �

� � �

� � �

� 3 � � 6

B � � �

B � �

B � �

B � �

� � � %

� � � B

� � � �

� � � �

� � � 8

� � 8

� � � 6

� � 6

0 �

� � �

� � %

� 0 % �

� 0 % B

� � � � �

� 3 � � 8

� � � 8 B

� � � 8 %

� � � 8 �

� � � 6 B

� � � 6 %

� � � 6 �

� �

� � �

� 0

� 0 �

� �

� � �

� �

� � �

� � � 8

� � � 6

� � � /

� � � 9

� 3 � � 6

B � � �

B � �

B � �

B � �

� � � %

� � � B

� � � �

� � � �

� .

� . �

Special Function Registers

To ensure successful operation of the microcontroller, certain internal registers are implemented

in the Data Memory area. These registers ensure correct operation of internal functions such as

timers, interrupts, etc. as well as external functions such as I/O data control and A/D converter op-

eration. The location of these registers within the Data Memory begins at the address 00H. Any un-

used Data Memory locations between these special function registers and the point where the

General Purpose Memory begins is reserved for future expansion purposes, attempting to read

data from these locations will return a value of 00H.

Indirect Addressing Registers � IAR, IAR0, IAR1

The method of indirect addressing allows data manipulation using memory pointers instead of the

usual direct memory addressing method where the actual memory address is defined. Any action

on the Indirect Addressing Registers will result in corresponding read/write operations to the mem-

ory location specified by the corresponding memory pointer. For the HT46R47/HT46C47 and

HT46R22/HT46C22 devices, one Indirect Addressing Register, IAR, and one Memory Pointer,

MP, is provided. For the HT46R23/HT46C23 and HT46R24/HT46C24 devices, two Indirect Ad-

dressing Registers, IAR0 and IAR1, and two Memory Pointers, MP0 and MP1, are provided. Note

that these Indirect Addressing Registers are not physically implemented and that reading the Indi-

rect Addressing Registers indirectly will return a result of 00H and writing to the registers indirectly

will result in no operation.

Memory Pointers � MP, MP0, MP1

For the HT46R47/HT46C47 and HT46R22/HT46C22 devices, one memory pointer known as MP

is provided, whereas for the HT46R23/HT46C23 and HT46R24/HT46C24 devices, two memory

pointers known as MP0 and MP1 are provided. These memory pointers are physically imple-

mented in the Data Memory and can be manipulated in the same way as normal registers provid-

ing a convenient way with which to address and track data. When any operation to the relevant

Indirect Addressing Registers is carried out, the actual address that the microcontroller is directed

to is the address specified by the related Memory Pointer.

Note For the HT46R47/HT46C47 and HT46R22/HT46C22 devices, bit 7 of the memory pointers are not

implemented. However, it must be noted that when the memory pointers in these devices are

read, a value of
1
 will be read.

The following example shows how to clear a section of four RAM locations already defined as loca-

tions adres1 to adres4.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 �code�
org 00h

Chapter 1 Hardware Structure

25

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp,a ; setup memory pointer with first RAM address

loop:
clr IAR ; clear the data at address defined by mp
inc mp ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to spe-

cific RAM addresses.

Bank Pointer � BP

The Bank Pointer only exists in the HT46R24/HT46C24 devices. The existence of the Bank

Pointer enables the HT46R24/HT46C24 devices to have a higher capacity of General Purpose

Data Memory compared to other devices in the A/D series. The address of the General Purpose

Data Memory bank in the HT46R24/HT46C24 microcontrollers ranges from 40H to FFH, a range

that would normally provide only 192 bytes of General Purpose Data Memory. However by locat-

ing the memory into two banks, known as Bank 0 and Bank 1, the General Purpose Data Memory

capacity can be expanded to 384 bytes. Bit 0 of the Bank Pointer, is utilized to set the present bank

of the General Purpose Data Memory. The General Purpose Data Memory is initialized to bank 0

after reset, except for the WDT Time-out reset in the HALT Mode, in which case, the General Pur-

pose Data Memory bank remains unchanged. When it is required to read from or write to the Gen-

eral Purpose Data Memory in the HT46R24/HT46C24 microcontrollers, it is necessary to first

setup the bank pointer to ensure that the correct memory bank is selected. It should be noted that

the Special Function Data Memory is not affected by the bank selection, which means the Special

Function Registers can be accessed from within either bank 0 or bank 1.

Accumulator � ACC

The Accumulator is central to the operation of any microcontroller and is closely related with opera-

tions carried out by the ALU. The Accumulator is the place where all intermediate results from the

ALU are stored. Without the Accumulator it would be necessary to write the result of each calcula-

tion or logical operation such as addition, subtraction, shift, etc. to the Data Memory resulting in

higher programming and timing overheads. Data transfer operations usually involve the tempo-

rary storage function of the Accumulator; for example, when transferring data between one user

defined register and another, it is necessary to do this by passing the data through the Accumula-

tor as no direct transfer between two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low byte of the Program Counter is made ac-

cessible to programmers by locating it within the Special Purpose area of the Data Memory. By ma-

nipulating this register, direct jumps to other program locations are easily implemented. Loading a

value directly into this PCL register will cause a jump to the specified Program Memory location,

however as the register is only 8-bit wide, only jumps within the current Program Memory page are

permitted. When such operations are used, note that a dummy cycle will be inserted.

26

A/D Type MCU

Look-up Table Registers � TBLP, TBLH

These two special function registers are used to control operation of the look-up table which is

stored in the Program Memory. TBLP is the table pointer and indicates the location where the table

data is located. Its value must be setup before any table read commands are executed. Its value

can be changed, for example using the INC or DEC instructions, allowing for easy table data point-

ing and reading. TBLH is the location where the high order byte of the table data is stored after a ta-

ble read data instruction has been executed. Note that the lower order table data byte is

transferred to a user defined location.

Status Register � STATUS

This 8-bit register (0AH) contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow

flag (OV), power down flag (PDF), and watchdog time-out flag (TO). It also records the status infor-

mation and controls the operation sequence.

With the exception of the TO and PDF flags, bits in the status register can be altered by in-

structions like most other registers. Any data written into the status register will not change

the TO or PDF flag. In addition, operations related to the status register may give different re-

sults due to the different instruction operations. The TO flag can be affected only by a system

power-up, a WDT time-out or by executing the
CLR WDT
 or
HALT
 instruction. The PDF

flag is affected only by executing the
HALT
 or
CLR WDT
 instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

� C is set if an operation results in a carry during an addition operation or if a borrow does not take

place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate

through carry instruction.

� AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the

high nibble into the low nibble in subtraction; otherwise AC is cleared.

� Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the highest-order bit but not a carry out of the high-

est-order bit, or vice versa; otherwise OV is cleared

� PDF is cleared by a system power-up or executing the
CLR WDT
 instruction. PDF is set by ex-

ecuting the
HALT
 instruction.

� TO is cleared by a system power-up or executing the
CLR WDT
 or
HALT
 instruction. TO is

set by a WDT time-out.

Chapter 1 Hardware Structure

27

� � � � . � & H � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � ! � � � � ! " � � # � � ! $ � % # � �
� 	 � �
 � . � 	 �
� � < � � � 	 �
 � � 	 � �
 � . � 	 �
H � � � � . � 	 �
� - � � ! � � F � . � 	 �

� & � � � � � � # $ # � � � � $ � � % # � �
� � F � � � � � F � � ! � 	 �
� 	
 � # � � � �
 � � � * � �
 � ! � 	 �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

, 5 , 8

In addition, on entering an interrupt sequence or executing a subroutine call, the status register

will not be pushed onto the stack automatically. If the contents of the status registers are important

and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

Interrupt Control Registers � INTC, INTC0, INTC1

These 8-bit registers known as INTC, INTC0 and INTC1, control the operation of the various exter-

nal and internal interrupt functions. By setting various bits within these registers using standard bit

manipulation instructions, the enable/disable function of each of the interrupts can be independ-

ently controlled. The various interrupt functions include those used by the internal timers, the ana-

log to digital converter and the I2C bus in addition to the external interrupt pin INT. For the

HT46R47/HT46C47 devices, only one 8-bit interrupt control register, known as INTC, is required

to control all its interrupt functions, while the additional features of the other devices require two in-

terrupt control registers, INTC0 and INTC1. A master interrupt bit within the INTC or INTC0 regis-

ter, the EMI bit, acts like a global enable/disable and is used to set all of the interrupt bits either on

or off. This bit is cleared when an interrupt routine is entered to disable all further interrupts and is

set by executing the
RETI
 instruction.

Note In situations where other interrupts may require servicing within present interrupt service routines,

the EMI bit can be manually set by the program after the present interrupt service routine has been

entered.

Timer/Event Counter Registers

Depending upon which device is selected, all devices contain one or two integrated Timer/Event

Counters of either 8-bit or 16-bit size. For devices with a single timer counter, an associated regis-

ter, known as TMR, is the location where the timer value is located. An associated control register,

known as TMRC, contains the setup information for the TMR register. For the HT46R24/HT46C24

devices which have two 16-bit timers, the individual timers are known as TMR0 and TMR1 with

their respective control registers known as TMR0C and TMR1C. In the case of 16-bit timers, the

actual value stored in the timer requires two bytes, a high byte and a low byte. These register pairs

are known as TMRL/TMRH or TMR0L/TMR0H and TMR1L/TMR1H. Note that the timer registers

can be directly written to in order to preload their contents with fixed data to allow different time in-

tervals to be setup.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O registers and their associated control regis-

ters play a prominent role. All I/O ports have a designated register correspondingly labeled as PA,

PB, PC, etc. These labeled I/O registers are mapped to specific addresses within the Data Mem-

ory as shown in the Data Memory table which are used to transfer the appropriate output or input

data on that port. With each I/O port there is an associated control register labeled PAC, PBC,

PCC, etc. also mapped to specific addresses with the Data Memory. The control register specifies

which pins of that port are set as inputs and which are set as outputs. To setup a pin as an input,

the corresponding bit of the control register must be set high, for an output it must be set low. Dur-

ing program initialization, it is important to first setup the control registers to specify which pins are

outputs and which are inputs before reading data from or writing data to the I/O ports. One flexible

feature of these registers is the ability to directly program single bits using the
SET [m].i
 and

28

A/D Type MCU

CLR [m].i
 instructions. The ability to change I/O pins from output to input and vice-versa by ma-

nipulating specific bits of the I/O control registers during normal program operation is a useful fea-

ture of these devices.

Pulse Width Modulator Registers � PWM, PWM0, PWM1, PWM2, PWM3

Each device in the A/D microcontroller range contains either 1, 2 or 4 integrated Pulse Width Modu-

lators or PWM. Each one has its own independent control register. For devices which contain a sin-

gle PWM, the control register is known as PWM, for devices with two PWMs, the control registers

are known as PWM0 and PWM1 while for devices with 4 PWMs, the control registers are known

as PWM0~PWM3. The 8-bit contents of each of these registers define the duty cycle value for the

modulation cycle of the corresponding pulse width modulator.

I
2
C Bus Registers � HADR, HCR, HSR, HDR

With the exception of the HT46R47/HT46C47, all devices contain an integrated I2C bus which in-

terfaces to the external shared pins SDA and SCL on the microcontroller. The correct setup and

data transfer operation of this 2-line bidirectional bus utilizes 4 special function registers. The

HADR register sets the slave address of the device while the HCR is the control register that en-

ables or disables the device as well as defines whether it is in transmit or receive mode. The HSR

register is the status register while the HDR register is the input/output data register.

A/D Converter Registers � ADRL, ADRH, ADCR, ADSR

Each device in the A/D microcontroller range contains either a 4 or 8-channel A/D converter. The

correct operation of the A/D requires the use of 4 registers. The high byte data register ADRH and

low byte data register ADRL, are the two locations where the digital value is placed after the com-

pletion of an analog to digital conversion cycle. The channel selection and configuration of the A/D

converter is setup via the control register ADCR while the A/D clock frequency is defined by the

clock source register, ADSR.

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output des-

ignation of every pin fully under user program control, pull-high options for all pins and wake up op-

tions on certain pins, the user is provided with an I/O structure to meet the needs of a wide range of

application possibilities.

Depending upon which device or package is chosen, the microcontroller range provides from 13

to 40 bidirectional input/output lines labeled with port names PA, PB, PC, etc. These I/O ports are

mapped to the Data Memory with specific addresses as shown in the Special Purpose Data

Memory table. All of these I/O ports can be used for input and output operations. For input opera-

tion, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of in-

struction
MOV A,[m]
, where m denotes the port address. For output operation, all the data is

latched and remains unchanged until the output latch is rewritten.

Chapter 1 Hardware Structure

29

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs usually requiring the

use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when con-

figured as an input have the capability of being connected to an internal pull-high resistor. These

pull-high resistors are selectable via configuration option and are implemented using a weak

PMOS transistor. Note that on some ports, individual pins can be selected to have pull-high resis-

tors, while on other ports all pins or no pins must be selected to have pull-high resistors.

Port A Wake-up

Each device has a HALT feature enabling the microcontroller to enter a power down mode and pre-

serve power, a feature that is important for battery and other low power applications. Various meth-

ods exist to wake-up the microcontroller, one of which is to change the logic condition on one of

the Port A pins from high to low. After a
HALT
 instruction forces the microcontroller into entering

a HALT condition, the processor will remain idle or in a low-power state until the logic condition of

the selected wake-up pin on Port A changes from high to low. This function is especially suitable

for applications that can be woken up via external switches. Note that each pin on Port A can be se-

lected individually to have this wake-up feature.

I/O Port Control Registers

Each I/O line has its own control register (PAC, PBC, PCC, etc.) to control the input/output configu-

ration. With this control register, each CMOS output or Schmitt Trigger input with or without

pull-high resistor structures can be reconfigured dynamically under software control. Each pin of

the I/O ports is directly mapped to a bit in its associated port control register. For the I/O pin to func-

tion as an input, the corresponding bit of the control register must be written as a
1
. This will then

allow the logic state of the input pin to be directly read by instructions. When the corresponding bit

of the control register is written as a
0
, the I/O pin will be setup as a CMOS output. If the pin is cur-

rently setup as an output, instructions can still be used to read the output register. However, it

should be noted that the program will in fact only read the status of the output data latch and not

the actual logic status of the output pin.

Pin-shared Functions

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more

than one function. Limited numbers of pins can force serious design constraints on designers but

by supplying pins with multi-functions, many of these difficulties can be overcome. For some pins,

the chosen function of the multi-function I/O pins is set by configuration options while for others the

function is set by application program control.

 External Interrupt Input

The external interrupt pin INT is pin-shared with the I/O pin PA5. For applications not requiring an

external interrupt input, the pin can be used as a normal I/O pin, however, to do this, the external

interrupt enable bits in the INTC register must be disabled.

30

A/D Type MCU

 External Timer Clock Input

Each device in the A/D series contains either one or two timers depending upon which one is cho-

sen. In the case of devices with a single timer, this pin is known as TMR, which is pin-shared with

PA4. However, for the 48-pin package HT46R24/HT46C24 devices, which have two internal tim-

ers, there are two independent input pins known as TMR0 and TMR1. For the 28-pin package

HT46R24/HT46C24 devices, which also have two internal timers, due to packaging limitations the

TMR0 pin is not available. On this package only the TMR1 external timer pin is available which is

pin-shared with PD1/PWM1/TMR1. If the PA4/TMR or PD1/PWM1/TMR1 pin is to be configured

as a timer input, the corresponding control bits in the timer control register must be correctly set.

The PA4/TMR and PD1/PWM1/TMR1 pin can be used as a normal I/O pin for applications that do

not require external timer inputs. For such applications, the timer mode control bits in the timer

control register must select the timer mode, which has an internal clock source, to prevent the I/O

from interfering with the timer counter operation.

 PFD, PWM Outputs, I
2
C Bus

Each device in the A/D series contains a PFD output, pin-shared with PA3, and one or more PWM

outputs, pin-shared with pins PD0~PD3. The number of PWM outputs depends upon which de-

vice is chosen. With the exception of the HT46R47/HT46C47 devices, there are two pins associ-

ated with an internal I2C Bus, which are pin-shared with I/O pins PA6 and PA7. The function of all

of these pins is chosen via configuration options and remains fixed after the device is pro-

grammed. Note that the correct software options within the application program must also be se-

lected to enable correct operation. If the I2C option is chosen, then note that any pull-high resistor

options associated with these pins will be automatically disconnected. For all pins, if chosen to

function as I/O pins, then full pull-high options remain.

 A/D Inputs

Each device in the A/D series has either four or eight inputs for the A/D converter. All of these ana-

log inputs are pin-shared with I/O pins on Port B. If these pins are to be used as A/D inputs and not

as normal I/O pins then the corresponding bits in the A/D Converter Control Register, ADCR, must

be properly set. There are no configuration options associated with the A/D function. If chosen as

I/O pins, then full pin-high resistor configuration options remain, however if used as A/D inputs

then any pull-high resistor options associated with these pins will be automatically disconnected.

Chapter 1 Hardware Structure

31

& � �

�

�

�) � * � + � � +
 � � �
�
 �
 � � � �) � * � +

' F) � * � + � ! � � � � � � � � �
 (

� � 	 � � � 	
 	 � � � � � �
 � �

� I

� D

�

� I

� D

�

� � �
 � � � � 0 �

� � � � * B � � # � � +
 � � �

� 	
 	 � 0 � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� # � + � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � 0 �

� � � � � � �

I

I

� �)
� � � � * � +

Non-pin-shared Function Input/Output Ports

32

A/D Type MCU

& � �

� . � � � � � � � � � � 	 - � ! � � �

�

�

� � 	 � � � 	
 	 � � � � � �
 � �

� I

� D

�

� I

� D I

�

� � �
 � � � � 0 �

� � � � * B � � # � � +
 � � �

� 	
 	 � 0 � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� # � + � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � 0 �

I

� . � � � � � � � +
 � � �

� � 9 � � . �
� � 8 � � � � 8
� � 6 � � � � 6
� � / � � � � /
� � 9 � � � � 9

� � 6 � � � � 6 � � � � 6
' B � 1 4 � / 1 � B � 1 4 � / 1
� / : * + � � � + 	 �) 	 � � � � � �
 (�

�

� � � 6
' B � 1 4 � / 1 � B � 1 4 � / 1
� / : * + � � � + 	 �) 	 � � � � � �
 (

� �)
� � � � * � +

PA3/PFD and PD0/PWM0~PD3/PWM3 Input/Output Ports

& � �

�

�� � 	 � � � 	
 	 � � � � � �
 � �

� I

� D

�

� I

� D

�

� � �
 � � � � 0 �

� � � � * B � � # � � +
 � � �

� 	
 	 � 0 � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� # � + � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � 0 �

� � � 3 � � ' � � 2 � � � �
 (
� � � � ' � � 1 � � � �
 (

� � 1 � � � � �
' � < � � +
 � B � 1 4 � / 1 � B � 1 4 � / 1 (

� � 2 � � 3 �

I

I

�) � * � + � � +
 � � �
�
 �
 � � � �) � * � +

� �)
� � � � * � +

PA4/PA5 Input/Output Ports

Chapter 1 Hardware Structure

33

& � �

�

�

� � 	 � � � 	
 	 � � � � � �
 � �

� I

� D

�

� I

� D I

�

� � �
 � � � � 0 �

� � � � * B � � # � � +
 � � �

� 	
 	 � 0 � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� # � + � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � 0 �

I

� / � � � � � ! � � � � 	
 � � � � � +
 � � �

� � 4 � � � � @ � � � 5 � � � % �
' � < � � +
 � B � 1 4 � 1 5 � B � 1 4 � 1 5 (

�

�� � � � / � � � � � � � �

� � � � / � � � � � � � �

�

�

�) � * � + � � +
 � � �
�
 �
 � � � �) � * � +

� �)
� � � � * � +

PA6/SDA, PA7/SCL Input/Output Ports

& � �

�

�

� � 	 � � � 	
 	 � � � � � �
 � �

� I

� D

�

� I

� D

�

� � �
 � � � � 0 �

� � � � * B � � # � � +
 � � �

� 	
 	 � 0 � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� # � + � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � 0 �

� 0 8 � � 3 8 J � 0 5 � � 3 5
' B � 1 4 � 1 5 � B � 1 4 � 1 5 � F �
 #
� � 0 8 � � 3 8 J � 0 9 � � 3 9 � � � �
 (

I

I

� � � / J � � � 8

� � � � � � � � � � - � �
 � �

� � 	 � � �
� � + �

� � � � �
 � �

� � � /
� � � 6
� � � 8

� �)
� � � � * � +

PB Input/Output Ports

Programming Considerations

Within the user program, one of the first things to consider is port initialization. After a reset, all of

the I/O data and port control registers will be set high. This means that all I/O pins will default to an

input state, the level of which depends on the other connected circuitry and whether pull-high op-

tions have been selected. If the port control registers, PAC, PBC, PCC, etc., are then programmed

to setup some pins as outputs, these output pins will have an initial high output value unless the as-

sociated port data registers, PA, PB, PC, etc., are first programmed. Selecting which pins are in-

puts and which are outputs can be achieved byte-wide by loading the correct values into the

appropriate port control register or by programming individual bits in the port control register using

the
SET [m].i
 and
CLR [m].i
 instructions. Note that when using these bit control instructions, a

read-modify-write operation takes place. The microcontroller must first read in the data on the en-

tire port, modify it to the required new bit values and then rewrite this data back to the output ports.

Port A has the additional capability of providing wake-up functions. When the chip is in the HALT

state, various methods are available to wake the device up. One of these is a high to low transition

of any of the Port A pins. Single or multiple pins on Port A can be setup to have this function.

Timer/Event Counters

The provision of timers form an important part of any microcontroller, giving the designer a means

of carrying out time related functions. The devices in the A/D Type MCU series contain either one

or two count up timers of either 8 or 16-bit capacity depending upon which device is selected. As

each timer has three different operating modes, they can be configured to operate as a general

timer, an external event counter or as a pulse width measurement device. With the exception of

TMR1 in the HT46R24/HT46C24 devices, the provision of an internal 8-stage prescaler to the

timer clock circuitry gives added range to the timer.

There are two types of registers related to the Timer/Event Counters. The first is the register that

contains the actual value of the timer and into which an initial value can be preloaded. Reading

from this register retrieves the contents of the Timer/Event Counter. The second type of associ-

ated register is the timer control register which defines the timer options and determines how the

timer is to be used. All devices can have the timer clock configured to come from the internal clock

source. In addition, with the exception of TMR0 in the 28-pin package in the HT46R24/HT46C24

devices, the timer clock source can also be configured to come from an external timer pin. The ac-

companying table lists the associated timer register names.

34

A/D Type MCU

� 6 � / � 9 � 1 � 6 � / � 9 � 1

� � �
 � �
 � � + � �
 � � 	 � � ! � � � � + � �

�
 �
 � � � � � � �)

� � �
 � � 	
 	

HT46R47
HT46C47

HT46R22
HT46C22

HT46R23
HT46C23

HT46R24
HT46R24

No. of 8-bit Timers 1 1 � �

Timer Register Name TMR TMR � �

Timer Control Register TMRC TMRC � �

No. of 16-bit Timers � � 1 2

Timer Register Name � � TMRL/TMRH
TMR0L/TMR0H
TMR1L/TMR1H

Timer Control Register � � TMRC
TMR0C
TMR1C

An external clock source is used when the timer is in the event counting mode, the clock source be-

ing provided on the external timer pin known as TMR, TMR0 or TMR1 depending on which device

is selected. These external pins may be pin-shared with other I/O pins depending upon which de-

vice and package is chosen. Depending upon the condition of the TE, T0E or T1E bit in the corre-

sponding timer control register, each high to low, or low to high transition on the external timer

input pin will increment the counter by one. Note that the 28-pin package HT46R24/HT46C24 de-

vices, although having two internal Timer/Event Counters, have only one external timer pin TMR1;

due to packaging limitations the TMR0 pin is not available.

Configuring the Timer/Event Counter Input Clock Source

The internal timer�s clock source can originate from either the system clock or from an external

clock source, with the exception of TMR0 in the 28-pin package HT46R24/HT46C24 devices. The

system clock input timer source is used when the timer is in the timer mode or in the pulse width

measurement mode. With the exception of TMR1 in the HT46R24/HT46C24 devices, whose timer

clock source is fSYS/4 and has no prescaler, the timer clock source is fSYS divided by the value in the

prescaler, the division ratio of which is conditioned by the bits PSC2~PSC0 or T0PSC2~T0PSC0.

An external clock source is used when the timer is in the event counting mode, the clock source be-

ing provided on an external timer pin, TMR, TMR0 or TMR1 depending upon which device and

which timer is used. Depending upon the condition of the TE, T0E or T1E bit, each high to low, or

low to high transition on the external timer pin will increment the counter by one. Note that as the

28-pin package HT46R24/HT46C24 devices has only one TMR1 external timer pin, its TMR0 inter-

nal timer cannot have an external clock source.

Chapter 1 Hardware Structure

35

� � � � � � + �

� 7

� � � � � � 7 - � �
 � � � � �
 � �
� � � � � � � �
 � � �

� � 3

� � � � � 	 � � � � � � �
 � �

� � � � � � 7 - � �

� � � �
 � �

� 	
 	 � 0 � �

� � � � 	 �

� - � � ! � � F

 � � � �
 � � � � +

� � � /

: * �
 	 � � � + � � � � 	 � � �

� � � / J � � � 8
' 6 � 6 J 6 � 6 / : (

: * 0 �
 � � � � � � � 7 - � �
 � � � � �
 � �

� � 6 � � 8

� � ! � > �

� . ��

8-bit Timer/Event Counter Structure � HT46R47/HT46C47 and HT46R22/HT46C22 TMR

Timer Registers � TMR, TMRL/TMRH, TMR0L/TMR0H, TMR1L/TMR1H

The timer register is a special function register located in the special purpose Data Memory and is

the place where the actual timer value is stored. For the 8-bit timer, this register is known as TMR.

For the 16-bit timer, a pair of 8-bit registers are required to store the 16-bit timer value. In the case

of the HT46R23/HT46C23 devices, this register pair is known as TMRL and TMRH. In the case of

the HT46R24/HT46C24 device which has two 16-bit timers, the register pair for TMR0 is known as

TMR0L and TMR0H, while the register pair for TMR1 is known as TMR1L and TMR1H. The value

36

A/D Type MCU

� � �

� 7

� � � � � � 7 - � �
 � � � � �
 � �
� � � � � � � �
 � � �

6 4 * 0 �

� � � � � 	 � � � � � � �
 � �

� 	
 	 � 0 � �

� � � � 	 �

� - � � ! � � F

 � � � �
 � � � � +

% � F � 0

 �
0 � ! ! � �

� � 6 � � 8

� � 3

B � � # � 0

 � % � F � 0

 �

6 4 * 0 �
 � � � � � � � 7 - � �
 � � � � �
 � �

� . �� � � /�

: * �
 	 � � � + � � � � 	 � � �

� � � / J � � � 8
' 6 � 6 J 6 � 6 / : (

� � ! � > �

16-bit Timer/Event Counter Structure � HT46R23/HT46C23 TMR

� � � 8
' 1 : * + � � � + 	 �) 	 � � � � � �
 (

� 8 7

� � � � � � 7 - � �
 � � � � �
 � �
� � � � � � � �
 � � �

6 4 * 0 �

� � � � � 	 � � � � � � �
 � �

� 	
 	 � 0 � �

� � � � 	 �

� - � � ! � � F

 � � � �
 � � � � +

% � F � 0

 �
0 � ! ! � �

� 8 � 6 � 8 � 8

� 8 � 3

B � � # � 0

 � % � F � 0

 �

6 4 * 0 �
 � � � � � � � 7 - � �
 � � � � �
 � �

� . �� � � /�

: * �
 	 � � � + � � � � 	 � � �

� 8 � � � / J � 8 � � � 8
' 6 � 6 J 6 � 6 / : (

� � ! � > �

16-bit Timer/Event Counter Structure � HT46R24/HT46C24 TMR0

� � � 6

� 6 7

� � � � � � 7 - � �
 � � � � �
 � �
� � � � � � � �
 � � �

6 4 * 0 �

� � � � � 	 � � � � � � �
 � �

� 	
 	 � 0 � �

� � � � 	 �

� - � � ! � � F

 � � � �
 � � � � +

% � F � 0

 �
0 � ! ! � �

� 6 � 6 � 6 � 8

� 6 � 3

B � � # � 0

 � % � F � 0

 �

6 4 * 0 �
 � � � � � � � 7 - � �
 � � � � �
 � �

� . �� � � /�

� � ! � > � � 1

16-bit Timer/Event Counter Structure � HT46R24/HT46C24 TMR1

in the timer registers increases by one each time an internal clock pulse is received or an external

transition occurs on the external timer pin. The timer will count from the initial value loaded by the

preload register to the full count of FFH for the 8-bit timer or FFFFH for the 16-bit timers at which

point the timer overflows and an internal interrupt signal is generated. The timer value will then be

reset with the initial preload register value and continue counting.

Note that to achieve a maximum full range count of FFH for the 8-bit timer or FFFFH for the 16-bit

timers, the preload registers must first be cleared to all zeros. It should be noted that after power

on, the preload registers will be in an unknown condition. Note that if the Timer/Event Counters are

in an OFF condition and data is written to their preload registers, this data will be immediately writ-

ten into the actual counter. However, if the counter is enabled and counting, any new data written

into the preload data register during this period will remain in the preload register and will only be

written into the actual counter the next time an overflow occurs. Note also that when the timer regis-

ters are read, the timer clock will be blocked to avoid errors, however, as this may result in certain

timing errors, programmers must take this into account.

For devices with 16-bit timers, which have both low byte and high byte timer registers, accessing

these registers is carried out in a specific way. It must be noted that when using instructions to

preload data into the low byte register, namely, TMRL, TMR0L or TMR1L, the data will only be

placed in a low byte buffer and not directly into the low byte register. The actual transfer of the data

into the low byte register is only carried out when a write to its associated high byte register,

namely, TMRH, TMR0H or TMR1H, is executed. On the other hand, using instructions to preload

data into the high byte timer register will result in the data being directly written to the high byte reg-

ister. At the same time the data in the low byte buffer will be transferred into its associated low byte

register. For this reason, when preloading data into the 16-bit timer registers, the low byte should

be written first. It must also be noted that to read the contents of the low byte register, a read to the

high byte register must first be executed to latch the contents of the low byte buffer into its associ-

ated low byte register. After this has been done, the low byte register can be read in the normal

way. Note that reading the low byte timer register will only result in reading the previously latched

contents of the low byte buffer and not the actual contents of the low byte timer register.

Timer Control Registers � TMRC, TMR0C, TMR1C

The flexible features of the Holtek microcontroller Timer/Event Counters enable them to operate in

three different modes, the options of which are determined by the contents of their respective con-

trol register. For devices with only one timer, the single timer control register is known as TMRC

while for devices with two timers, there are two timer control registers known as TMR0C and

TMR1C. It is the timer control register together with its corresponding timer registers that control

the full operation of the Timer/Event Counters. Before the timers can be used, it is essential that

the appropriate timer control register is fully programmed with the right data to ensure its correct

operation, a process that is normally carried out during program initialization.

To choose which of the three modes the timer is to operate in, either in the timer mode, the event

counting mode or the pulse width measurement mode, bits 7 and 6 of the Timer Control Register,

which are known as the bit pair TM1/TM0, T0M1/T0M0 or T1M1/T1M0 respectively, depending

upon which timer is used, must be set to the required logic levels. The timer-on bit, which is bit 4 of

the Timer Control Register and known as TON, T0ON or T1ON, depending upon which timer is

Chapter 1 Hardware Structure

37

used, provides the basic on/off control of the respective timer. Setting the bit high allows the coun-

ter to run, clearing the bit stops the counter. For timers that have prescalers, bits 0~2 of the Timer

Control Register determine the division ratio of the input clock prescaler. The prescaler bit settings

have no effect if an external clock source is used. If the timer is in the event count or pulse width

measurement mode, the active transition edge level type is selected by the logic level of bit 3 of the

Timer Control Register which is known as TE, T0E or T1E, depending upon which timer is used.

38

A/D Type MCU

� � � � � � ' (� $ � � � !) $ � � � � � ! $ � � ! � � � � � � � � �
� * � �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

7 - � �
 � � � � �
 � � � 	 �
 � - � � � � � � � � � � � �

6 ? � � � � �
 � � � � ! 	 � � � � � � � � � �
8 ? � � � � �
 � � � � � � � � � � � � � � � �

� � � � � � + � � � � 	 � � � � � 	
 � � � � � � �

� � � /
8
8
8
8
6
6
6
6

� � � 6
8
8
6
6
8
8
6
6

� � � 8
8
6
8
6
8
6
8
6

� � � � � � � 	
 �
� � � � � 6 ? 6
� � � � � 6 ? /
� � � � � 6 ? 1
� � � � � 6 ? :
� � � � � 6 ? 6 4
� � � � � 6 ? 9 /
� � � � � 6 ? 4 1
� � � � � 6 ? 6 / :

� � � � � � 7 - � �
 � � � � �
 � � � � � � �
 � � � � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

� + � � 	
 � � � � � � � � � � � � � �

� � 6
8
8
6
6

� � 8
8
6
8
6

� � � � � � � � 	 - 	 � � 	 , � �
� - � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
+ � � � � � F � �
 # � � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 # � � � 	 � � � � � � �
 � 	 �
 � - � � � � � � � � � � � �

6 ? � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � @ � �
 � + � � � � ! 	 � � � � � � � � � �
8 ? � �
 	 �
 � � � � �
 � � � � � � � ! 	 � � � � � � � � � � @ � �
 � + � � � � � � � � � � � � � � � �

, 5

� 7� � 3� � 8� � 6

, 8

� � � / � � � 6 � � � 8

� � � � � � ' (� $ � � � !) $ � � � � � ! $ � � ! � � � � � � � � �
� * � + �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

7 - � �
 � � � � �
 � � � 	 �
 � - � � � � � � � � � � � �

6 ? � � � � �
 � � � � ! 	 � � � � � � � � � �
8 ? � � � � �
 � � � � � � � � � � � � � � � �

� � � � � � + � � � � 	 � � � � � 	
 � � � � � � �

� 8 � � � /
8
8
8
8
6
6
6
6

� 8 � � � 6
8
8
6
6
8
8
6
6

� 8 � � � 8
8
6
8
6
8
6
8
6

� � � � � � � 	
 �
� � � � � 6 ? 6
� � � � � 6 ? /
� � � � � 6 ? 1
� � � � � 6 ? :
� � � � � 6 ? 6 4
� � � � � 6 ? 9 /
� � � � � 6 ? 4 1
� � � � � 6 ? 6 / :

� � � � � � 7 - � �
 � � � � �
 � � � � � � �
 � � � � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

� + � � 	
 � � � � � � � � � � � � � �

� 8 � 6
8
8
6
6

� 8 � 8
8
6
8
6

� � � � � � � � 	 - 	 � � 	 , � �
� - � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
+ � � � � � F � �
 # � � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 # � � � 	 � � � � � � �
 � 	 �
 � - � � � � � � � � � � � �

6 ? � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � @ � �
 � + � � � � ! 	 � � � � � � � � � �
8 ? � �
 	 �
 � � � � �
 � � � � � � � ! 	 � � � � � � � � � � @ � �
 � + � � � � � � � � � � � � � � � �

, 5

� 8 7� 8 � 3� 8 � 8� 8 � 6

, 8

� 8 � � � / � 8 � � � 6 � 8 � � � 8

The HT46R24/HT46C24 devices have two internal timers, TMR0 and TMR1, and therefore re-

quire an additional timer control register TMR1C.

Configuring the Timer Mode

In this mode, the timer can be utilized to measure fixed time intervals, providing an internal inter-

rupt signal each time the counter overflows. To operate in this mode, the bit pair, TM1/TM0,

T0M1/T0M0 or T1M1/T1M0, depending upon which timer is used, must be set to 1 and 0 respec-

tively. In this mode the internal clock is used as the timer clock. With the exception of TMR1 in the

HT46R24/HT46C24, the input clock frequency is fSYS divided by the value programmed into the

prescaler, the value of which is determined by bits PSC2~PSC0 or T0PSC2~T0PSC0 in the timer

control register. For TMR1 in theHT46R24/HT46C24, which has no prescaler, the input clock fre-

quency is fSYS/4. The timer-on bit, TON, T0ON or T1ON, depending upon which timer is used,

must be set high to enable the timer to run. Each time an internal clock high to low transition oc-

curs, the timer increments by one; when the timer is full and overflows, an interrupt signal is gener-

ated and the timer will preload the value already loaded into the preload register and continue

counting. A timer overflow condition and corresponding internal interrupt is one of the wake-up

sources, however, the internal interrupts can be disabled by ensuring that the ETI or ET0I and

ET1I bits of the INTC register are reset to zero.

Configuring the Event Counter Mode

In this mode, a number of externally changing logic events, occurring on the external timer pin, can

be recorded by the internal timer. For the timer to operate in the event counting mode, the bit pair,

TM1/TM0, T0M1/T0M0 or T1M1/T1M0, depending upon which timer is used, must be set to 0 and

1 respectively. The timer-on bit, TON, T0ON or T1ON, depending upon which timer is used, must

be set high to enable the timer to count. Depending upon which counter is used, if TE, T0E or T1E

is low, the counter will increment each time the external timer pin receives a low to high transition.

Chapter 1 Hardware Structure

39

� � � � � � � �

� � � � � � � � �
 � � � � � �

� � � � � � � � � �) � � �
� � � � � 	 � � � � � �
 + �

� � � � � � = � 6 � � � � � � = � / � � � � � � = � 3 � � � � � � = � 3 � = � 6

Timer Mode Timing Chart

� � � � � � ' (� $ � � � !) $ � � � � � ! $ � � ! � � � � � � � � �
� * � 	 �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

, 5

7 - � �
 � � � � �
 � � � 	 �
 � - � � � � � � � � � � � �

6 ? � � � � �
 � � � � ! 	 � � � � � � � � � �
8 ? � � � � �
 � � � � � � � � � � � � � � � �

� 6 7� 6 � 3� 6 � 8� 6 � 6

, 8

� � � � � � 7 - � �
 � � � � �
 � � � � � � �
 � � � � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

� + � � 	
 � � � � � � � � � � � � � �

� 6 � 6
8
8
6
6

� 6 � 8
8
6
8
6

� � � � � � � � 	 - 	 � � 	 , � �
� - � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
+ � � � � � F � �
 # � � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 # � � � 	 � � � � � � �
 � 	 �
 � - � � � � � � � � � � � �

6 ? � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � @ � �
 � + � � � � ! 	 � � � � � � � � � �
8 ? � �
 	 �
 � � � � �
 � � � � � � � ! 	 � � � � � � � � � � @ � �
 � + � � � � � � � � � � � � � � � �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

If TE, T0E or T1E is high, the counter will increment each time the external timer pin receives a

high to low transition. As in the case of the other two modes, when the counter is full, the timer will

overflow and generate an internal interrupt signal. The counter will then preload the value already

loaded into the preload register. As the external timer pins are pin-shared with other I/O pins, to en-

sure that the pin is configured to operate as an event counter input pin, two things have to happen.

The first is to ensure that the TM1/TM0, T0M1/T0M0 or T1M1/T1M0 bits place the Timer/Event

Counter in the event counting mode, the second is to ensure that the port control register

configures the pin as an input. Note that the 28-pin package HT46R24/HT46C24 devices, al-

though having two internal timers, only one TMR1 external control pin is available. As a result

TMR0 cannot be used in the Event Counter Mode.

Configuring the Pulse Width Measurement Mode

In this mode, the width of external pulses applied to the external timer pin can be measured. In the

Pulse Width Measurement Mode the timer clock source is supplied by the internal clock. For the

timer to operate in this mode, the bit pair, TM1/TM0, T0M1/T0M0 or T1M1/T1M0, depending upon

which timer is used, must both be set high. Depending upon which counter is used, if TE, T0E or

T1E is low, once a high to low transition has been received on the external timer pin, the timer will

start counting until the external timer pin returns to its original high level. At this point the TON,

T0ON or T1ON bit, depending upon which counter is used, will be automatically reset to zero and

the timer will stop counting. If the TE, T0E or T1E bit is high, the timer will begin counting once a

low to high transition has been received on the external timer pin and stop counting when the exter-

nal timer pin returns to its original low level. As before, the TON, T0ON or T1ON bit will be automati-

cally reset to zero and the timer will stop counting. It is important to note that in the Pulse Width

Measurement Mode, the TON, T0ON or T1ON bit is automatically reset to zero when the external

control signal on the external timer pin returns to its original level, whereas in the other two modes

the TON, T0ON or T1ON bit can only be reset to zero under program control. The residual value in

the timer, which can now be read by the program, therefore represents the length of the pulse re-

ceived on the external timer pin. As the TON, T0ON or T1ON bit has now been reset, any further

transitions on the external timer pin, will be ignored. Not until the TON, T0ON or T1ON bit is again

set high by the program can the timer begin further pulse width measurements. In this way, single

shot pulse measurements can be easily made. It should be noted that in this mode the counter is

controlled by logical transitions on the external timer pin and not by the logic level.

As in the case of the other two modes, when the counter is full, the timer will overflow and generate

an internal interrupt signal. The counter will also be reset to the value already loaded into the

preload register. If the external timer pin is pin-shared with other I/O pins, to ensure that the pin is

configured to operate as a pulse width measuring input pin, two things have to happen. The first is

to ensure that the TM1/TM0, T0M1/T0M0 or T1M1/T1M0 bits place the Timer/Event Counter in

the pulse width measuring mode, the second is to ensure that the port control register configures

the pin as an input. Note that the 28-pin package HT46R24/HT46C24 devices, although having

two internal timers, only one TMR1 external control pin is available. As a result TMR0 cannot be

used in the Pulse Width Measurement Mode.

40

A/D Type MCU

� � � � � = / � � � � � = 9

7 <
 � � � 	 � � 7 - � �

� � � � � � � �

� � � � � � � � � �
 � �

� � � � � = 6

Event Counter Mode Timing Chart

Programmable Frequency Divider � PFD

The PFD output is pin-shared with the I/O pin PA3. The function is selected via configuration op-

tion, however, if not selected, the pin can operate as a normal I/O pin. Note that for the HT46R24/

HT46C24 devices, which have two internal timers, the timer source for the PFD can be chosen, via

configuration option, to come from either one of the two timers.

The timer overflow signal is the clock source for the PFD circuit. The output frequency is controlled

by loading the required values into the timer prescaler registers to give the required division ratio.

The counter, driven by the system clock which is divided by the prescaler value, will begin to

count-up from this preload register value until full, at which point an overflow signal is generated,

causing the PFD output to change state. The counter will then be automatically reloaded with the

preload register value and continue counting-up. Refer to the relevant Timer/Event Counters sec-

tion for details of its settings and operations.

For the PFD output to function, it is essential that the corresponding bit of the Port A control regis-

ter PAC bit 3 is setup as an output. If setup as an input the PFD output will not function, however,

the pin can still be used as a normal input pin. The PFD output will only be activated if bit PA3 is set

to
1
. This output data bit is used as the on/off control bit for the PFD output. Note that the PFD

output will be low if the PA3 output data bit is cleared to
0
.

Using this method of frequency generation, and if a crystal oscillator is used for the system clock,

very precise values of frequency can be generated.

Chapter 1 Hardware Structure

41

� � � � � � � - � � ! � � F

� . � � � � � �)

� � 9 � � 	
 	

� . � � � �
 + �
 � 	
 � � � 9

= 6 = / = 9 = 1� � � � �

7 <
 � � � 	 � � � � � � �
� � � � � � + �

� � 3 @ � � 8 � 3 � � � � � 6 � 3
' F �
 # � � 7 @ � � 8 7 � � � � � 6 7 K 8 (

� � � � � 	 � � � � � �
 + �

' F �
 # � � � � �) K ! � > � (

� � � � � � � �

� � � � � � � � � �
 � �

� � � � � 	 � � � � � �
 + �
 � � � � � 	 � + � � � � 	
 � � - � �
 � ! 	 � � � � � � � � � � � � ! � � 6 "

Pulse Width Measurement Mode Timing Chart

Prescaler

With the exception of TMR1C, bits 0~2 of the timer control register can be used to define the

pre-scaling stages of the internal clock sources of the Timer/Event Counter. The Timer/Event

Counter overflow signal can be used to generate signals for the PFD and as a Timer Interrupt.

I/O Interfacing

The Timer/Event Counter when configured to run in the event counter or pulse width measure-

ment mode, require the use of the external timer pin for correct operation. This external timer pin

may be pin-shared with other I/O pins, depending upon which device is selected. Pull-high resis-

tors can be selected for connection to the timer input pins. The timers can also be setup to drive

the PFD pin. When the PFD output is selected by selecting the correct configuration option, the out-

put of the chosen timer can be made to drive this at a frequency determined by the contents of the

timer register and the timer.

Programming Considerations

When configured to run in the timer mode, the internal system clock is used as the timer clock

source and is therefore synchronized with the overall operation of the microcontroller. In this mode

when the appropriate timer register is full, the microcontroller will generate an internal interrupt sig-

nal directing the program flow to the respective internal interrupt vector. For the pulse width mea-

surement mode, the internal system clock is also used as the timer clock source but the timer will

only run when the correct logic condition appears on the external timer input pin. As this is an exter-

nal event and not synchronized with the internal timer clock, the microcontroller will only see this

external event when the next timer clock pulse arrives. As a result, there may be small differences

in measured values requiring programmers to take this into account during programming. The

same applies if the timer is configured to be in the event counting mode which again is an external

event and not synchronized with the internal system or timer clock.

Pulse Width Modulator

Each microcontroller in the A/D series is provided with one or more Pulse Width Modulation

(PWM) outputs. Useful for such applications such as motor speed control, the PWM function pro-

vides outputs with a fixed frequency but with a duty cycle that can be varied by setting particular

values into the corresponding PWM register.

A single register, located in the Data Memory is assigned to each PWM. For devices with a single

PWM output, this register is known as PWM. For devices with two PWM outputs, the registers as-

sume the names PWM0 and PWM1 while devices with four PWM outputs require a further addi-

tional two registers known as PWM2 and PWM3. It is here that the 8-bit value, which represents

the overall duty cycle of one modulation cycle of the output waveform, should be placed. To in-

crease the PWM modulation frequency, each modulation cycle is modulated into two or four indi-

vidual modulation sub-sections, known as the 7+1 mode or 6+2 mode respectively. With the

exception of the HT46R47/HT46C47 devices, which have a fixed 6+2 mode, each device can

choose which mode to use by selecting the appropriate configuration option. When a mode config-

uration option is chosen, it applies to all PWM outputs on that device. Note that when using the

PWM it is only necessary to write the required value into the appropriate PWM register and select

the required mode configuration option, the subdivision of the waveform into its sub-modulation cy-

cles is done automatically within the microcontroller hardware.

42

A/D Type MCU

For all devices, the PWM clock source is the system clock fSYS.

Device Channels PWM Mode Output Pin PWM Register Name

HT46R47/HT46C47 1 6+2 PD0 PWM

HT46R22/HT46C22 1 6+2 or 7+1 PD0 PWM

HT46R23/HT46C23
(24-pin package)

1 6+2 or 7+1 PD0 PWM0

HT46R23/HT46C23
(28-pin package)

2 6+2 or 7+1 PD0/PD1 PWM0/PWM1

HT46R24/HT46C24
(28-pin package)

2 6+2 or 7+1 PD0/PD1 PWM0/PWM1

HT46R24/HT46C24
(48-pin package)

4 6+2 or 7+1 PD0/PD1/PD2/PD3
PWM0/PWM1/
PWM2/PWM3

PWM Function Table

This method of dividing the original modulation cycle into a further 2 or 4 sub-cycles enables the

generation of higher PWM frequencies, which allow a wider range of applications to be served. As

long as the periods of the generated PWM pulses are less than the time constants of the load, the

PWM output will be suitable as such long time constant loads will average out the pulses of the

PWM output. The difference between what is known as the PWM cycle frequency and the PWM

modulation frequency should be understood. As the PWM clock is the system clock, fSYS, and as

the PWM value is 8-bits wide, the overall PWM cycle frequency is fSYS/256. However, when in the

7+1 mode of operation the PWM modulation frequency will be fSYS/128, while the PWM modula-

tion frequency for the 6+2 mode of operation will be fSYS/64.

PWM Modulation Frequency PWM Cycle Frequency PWM Cycle Duty

fSYS/64 for (6+2) bits mode
fSYS/128 for (7+1) bits mode

fSYS/256 [PWM]/256

6+2 PWM Mode

Each full PWM cycle, as it is controlled by an 8-bit PWM register, has 256 clock periods. However,

in the 6+2 PWM Mode, each PWM cycle is subdivided into four individual sub-cycles known as

modulation cycle 0 ~ modulation cycle 3, denoted as
i
 in the table. Each one of these four

sub-cycles contains 64 clock cycles. In this mode, a modulation frequency increase by a factor of

four is achieved. The 8-bit PWM register value, which represents the overall duty cycle of the

PWM waveform, is divided into two groups. The first group which consists of bit2~bit7 is denoted

here as the DC value. The second group which consists of bit0~bit1 is known as the AC value. In

the 6+2 PWM mode, the duty cycle value of each of the four modulation sub-cycles is shown in the

following table.

Parameter AC (0~3) DC (Duty Cycle)

Modulation cycle i
(i=0~3)

i<AC
DC 1

64

+

i�AC
DC

64

6+2 Mode Modulation Cycle Values

Chapter 1 Hardware Structure

43

The following diagram illustrates the waveforms associated with the 6+2 mode of PWM operation.

It is important to note how the single PWM cycle is subdivided into 4 individual modulation cycles,

numbered from 0~3 and how the AC value is related to the PWM value.

7+1 PWM Mode

Each full PWM cycle, as it is controlled by an 8-bit PWM register has 256 clock periods. However,

in the 7+1 PWM mode, each PWM cycle is subdivided into two individual sub-cycles, known as

modulation cycle 0 and modulation cycle 1, denoted as
i
 in the table. Each one of these two

sub-cycles contains 128 clock cycles. In this mode, a modulation frequency increase by a factor of

two is achieved. The 8-bit PWM register value, which represents the overall duty cycle of the PWM

waveform, is divided into two groups. The first group which consists of bit1~bit7 is denoted here as

the DC value. The second group which consists of bit0 is known as the AC value. In the 7+1 PWM

mode, the duty cycle value of each of the two modulation sub-cycles is shown in the following table.

Parameter AC (0~1) DC (Duty Cycle)

Modulation cycle i
(i=0~1)

i<AC
DC 1

128

+

i�AC
DC

128

7+1 Mode Modulation Cycle Values

44

A/D Type MCU

! � > � � /

� � �

A � � � C � K 6 8 8

A � � � C � K 6 8 6

� � �

A � � � C � K 6 8 /

� � �

A � � � C � K 6 8 9

� � �

� � � � �
 � � � � ? � / 2 4 � ! � > �

/ 2 � 4 1

/ 4 � 4 1

/ 4 � 4 1

/ 4 � 4 1

/ 2 � 4 1 / 2 � 4 1 / 2 � 4 1

/ 2 � 4 1

/ 2 � 4 1

/ 2 � 4 1

/ 2 � 4 1

/ 4 � 4 1

/ 4 � 4 1

/ 2 � 4 1

/ 2 � 4 1

/ 4 � 4 1 / 2 � 4 1

/ 4 � 4 1

/ 4 � 4 1

/ 4 � 4 1

� � � � � 	
 � � � � �
 � � � � 8

� � � � � � � � � 	
 � � � � + � � � � � � ? � 4 1 � ! � > �

� � � � � 	
 � � � � �
 � � � � 6 � � � � � 	
 � � � � �
 � � � � / � � � � � 	
 � � � � �
 � � � � 9 � � � � � 	
 � � � � �
 � � � � 8

6+2 PWM Mode

� , * � � � � � � � � � � � � � � - � . � / � * ! 0 �
, 5 , 8

� � � � - 	 � � �

� � � - 	 � � �

PWM Register for 6+2 Mode

The following diagram illustrates the waveforms associated with the 7+1 mode of PWM operation.

It is important to note how the single PWM cycle is subdivided into 2 individual modulation cycles,

numbered 0 and 1 and how the AC value is related to the PWM value.

PWM Output Control

On all devices, the PWM outputs are pin-shared with the Port D I/O pins. To operate as PWM out-

puts and not as I/O pins, the correct PWM configuration options must be selected. A
0
 must also

be written to the corresponding bits in the I/O port control register PDC to ensure that the required

PWM output pins are setup as outputs. After these two initial steps have been carried out, and of

course after the required PWM value has been written into the PWM register, writing a
1
 to the

corresponding bit in the PD output data register will enable the PWM data to appear on the pin.

Writing a
0
 to the corresponding bit in the PD output data register will disable the PWM output

function and force the output low. In this way, the Port D data output register can be used as an

on/off control for the PWM function. Note that if the configuration options have selected the PWM

function, but a
1
 has been written to its corresponding bit in the PDC control register to configure

the pin as an input, then the pin can still function as a normal input line, with pull-high resistor op-

tions.

clr PDC.0 ; set pin PD0 as output
clr PDC.1 ; set pin PD1 as output
clr PDC.2 ; set pin PD2 as output
clr PDC.3 ; set pin PD3 as output

Chapter 1 Hardware Structure

45

! � > � � /

� � �

A � � � C � K 6 8 8

A � � � C � K 6 8 6

� � �

A � � � C � K 6 8 /

� � �

A � � � C � K 6 8 9

� � �

� � � � � � � � � 	
 � � � � + � � � � � � ? � 6 / : � ! � > �

2 8 � 6 / :

2 6 � 6 / :

2 6 � 6 / :

2 / � 6 / :

2 8 � 6 / :

2 8 � 6 / :

2 6 � 6 / :

2 6 � 6 / :

2 8 � 6 / :

2 6 � 6 / :

2 6 � 6 / :

2 / � 6 / :

� � � � � 	
 � � � � �
 � � � � 8

� � � � �
 � � � � ? � / 2 4 � ! � > �

� � � � � 	
 � � � � �
 � � � � 6 � � � � � 	
 � � � � �
 � � � � 8

7+1 PWM Mode

� , * � � � � � � � � � � � � � � - � . 	 / � * ! 0 �
, 5 , 8

� � � � - 	 � � �

� � � - 	 � � �

PWM Register for 7+1 Mode

set pd.0 ; PD.0=1; enable pin
PD0/PWM0
 to be the PWM channel 0
mov a,64h ; PWM0=100D=64H
mov pwm0,a

set pd.1 ; PD.1=1; enable pin
PD1/PWM1
 to be the PWM channel 1
mov a,65h ; PWM1=101D=65H
mov pwm1,a

set pd.2 ; PD.2=1; enable pin
PD2/PWM2
 to be the PWM channel 2
mov a,66h ; PWM2=102D=66H
mov pwm2,a

set pd.3 ; PD.3=1; enable pin
PD3/PWM3
 to be the PWM channel 3
mov a,67h ; PWM3=103D=67H
mov pwm3,a

clr pd.0 ; disable PWM0 output � PD.0 will remain low

clr pd.1 ; disable PWM1 output � PD.1 will remain low

clr pd.2 ; disable PWM2 output � PD.2 will remain low

clr pd.3 ; disable PWM3 output � PD.3 will remain low

Analog to Digital Converter

The need to interface to real world analog signals is a common requirement for many electronic

systems. However, to properly process these signals by a microcontroller, they must first be con-

verted into digital signals by A/D converters. By integrating the A/D conversion electronic circuitry

into the microcontroller, the need for external components is reduced significantly with the corre-

sponding follow-on benefits of lower costs and reduced component space requirements. Each of

the devices in the Holtek A/D series of microcontrollers contains either a 4-channel or 8-channel

analog to digital converter which can directly interface to external analog signals such as that from

sensors or other control signals and convert these signals directly into either a 9-bit or 10-bit digital

value.

Device Input Channels Conversion Bits Input Pins

HT46R47/HT46C47 4 9 PB0~PB3

HT46R22/HT46C22 8 9 PB0~PB7

HT46R23/HT46C23 8 10 PB0~PB7

HT46R24/HT46C24 8 10 PB0~PB7

A/D Converter Data Registers � ADRL/ADRH

To store the actual 9-bit or 10-bit digital value, obtained after the completion of the conversion pro-

cess, a high byte register ADRH and low byte register ADRL are assigned. After the conversion

process takes place, these two registers can be directly read by the microcontroller to obtain the

digitized conversion value. Note that only the high byte register ADRH utilizes its full 8-bit con-

tents. The low byte register utilizes only 1 or 2 bits of its 8-bit contents as it contains only the lowest

one or two bits of the 9 or 10-bit converted value.

46

A/D Type MCU

In the following tables, D0~D8 or D9 are the A/D conversion data result bits.

Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADRL D0 � � � � � � �

ADRH D8 D7 D6 D5 D4 D3 D2 D1

A/D Data Register � HT46R47/HT46C47 and HT46R22/HT46C22

Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADRL D1 D0 � � � � � �

ADRH D9 D8 D7 D6 D5 D4 D3 D2

A/D Data Register � HT46R23/HT46C23 and HT46R24/HT46C24

A/D Converter Control Register � ADCR

To control the function and operation of the A/D converter, a control register known as ADCR is pro-

vided. This 8-bit register defines functions such as the selection of which analog channel is con-

nected to the internal A/D converter, which pins are used as analog inputs and which are used as

normal I/Os as well as controlling and monitoring the A/D converter start and reset functions.

One section of this register contains the bits ACS2~ACS0 which define the channel number. As

each of the devices contains only one actual analog to digital converter circuit, each of the individ-

ual 4 or 8 analog inputs must be routed to the converter. It is the function of the ACS2~ACS0 bits in

the ADCR register to determine which analog channel is actually connected to the internal A/D

converter. For the HT46R22/HT46C22, HT46R23/HT46C23 and HT46R24/HT46C24 devices

which have eight analog input channels, the full three bits are required for channel selection, how-

ever, for the HT46R47/HT46C47 devices, which have only four analog input channels, bit ACS2 is

not used and should be kept at a
0
 value. For the HT46R47/HT46C47 devices, if ACS2 is set to

1
 the function of ACS2~ACS0 will be undefined.

The ADCR control register also contains the PCR2~PCR0 bits which determine which pins on

Port B are used as analog inputs for the A/D converter and which pins are to be used as normal

I/Os. For the HT46R22/HT46C22, HT46R23/HT46C23 and HT46R24/HT46C24 devices which

have eight analog input channels, the full three bits are required to fully configure the function of

the bits on Port B. However, for the HT46R47/HT46C47 devices, which have only four analog in-

put channels, if the 3-bit address on PCR2~PCR0 has a value of
101
 or higher, then the same

function as the value
100
 will apply, that is AN0, AN1, AN2 and AN3 will all be set as analog in-

puts. Note that if the PCR2~PCR0 bits are all set to zero, then all the Port B pins will be setup as

normal I/Os and the internal A/D converter circuitry will be powered off to reduce the power con-

sumption.

Chapter 1 Hardware Structure

47

The START bit in the ADCR register is used to start and reset the A/D converter. When the

microcontroller sets this bit from low to high and then low again, an analog to digital conversion cy-

cle will be initiated. When the START bit is brought from low to high but not low again, the EOCB bit

in the ADCR register will be set to a
1
 and the analog to digital converter will be reset. It is the

START bit that is used to control the overall on/off operation of the internal analog to digital con-

verter.

The EOCB bit in the ADCR register is used to indicate when the analog to digital conversion pro-

cess is complete. This bit will be automatically set to
0
 by the microcontroller after a conversion

cycle has ended. In addition, the corresponding A/D interrupt request flag will be set in the inter-

48

A/D Type MCU

� � � � � � � � � � � � � � - � 1 �) 0 � $ � � � � � � � � � � � � � � � � � /

� � � � �
 � � � � � � # 	 � � � �

, 5 , 8

� � � � � � � � / � � � 6 � � � 8 � � � / � � � 6 � � � 8

� � � /
8
8
8
8
6
6
6
6

� � � 6
8
8
6
6
8
8
6
6

� � � 8
8
6
8
6
8
6
8
6

? � � 3 8
? � � 3 6
? � � 3 /
? � � 3 9
? � � 3 1
? � � 3 2
? � � 3 4
? � � 3 5

� � �
 � 0 � � � � � � # 	 � � � � � � � � ! � � � � 	
 � � � �

� � � /
8
8
8
8
6
6
6
6

� � � 6
8
8
6
6
8
8
6
6

� � � 8
8
6
8
6
8
6
8
6

? � � � � �
 � 0 � � � � � � # 	 � � � � � � * � 	 � � � � ! !
? � � � 0 8 � � � 	 , � � � � 	 � � � 3 8
? � � � 0 8 J � 0 6 � � � 	 , � � � � 	 � � � 3 8 J � 3 6
? � � � 0 8 J � 0 / � � � 	 , � � � � 	 � � � 3 8 J � 3 / �
? � � � 0 8 J � 0 9 � � � 	 , � � � � 	 � � � 3 8 J � 3 9 �
? � � � 0 8 J � 0 1 � � � 	 , � � � � 	 � � � 3 8 J � 3 1
? � � � 0 8 J � 0 2 � � � 	 , � � � � 	 � � � 3 8 J � 3 2
? � � � 0 8 J � 0 5 � � � 	 , � � � � 	 � � � 3 8 J � 3 5

7 � � � � ! � � � � � � � � - � � � � � � � ! � 	 �
6 ? � � �
 � � � � � � ! � � � � � � � � - � � � � � � � * � � � � � � � � - � � � � � � � F 	 �
 � � � � � � � � � � + � � � � � � �
8 ? � � � � � � ! � � � � � � � � - � � � � � � � * � � � � � � � � - � � � � � � � � � � � �

�
 	 �
 �
 # � � � � � � � � � - � � � � � �

8 � � � 6 � � � 8 � ? � �
 	 �

8 � � � 6 � ? � � � � �
 � � � � � � � � - � �
 � � � 	 � � � � �
 � 7 � � 0 �
 � � G 6 G

7 � � 0

� � � � � � � � � � � � � � - � � � � � � � � � � � � � � � /

� � � � �
 � � � � � � # 	 � � � �

, 5 , 8

� � � � � � � � / � � � 6 � � � 8 � � � / � � � 6 � � � 8

� � � /
8
8
8
8
6

� � � 6
8
8
6
6
�

� � � 8
8
6
8
6
�

? � � 3 8
? � � 3 6
? � � 3 /
? � � 3 9
? � � � � � ! � � � � @ � � 	 � � �
 � , � � � � � � �

� � �
 � 0 � � � � � � # 	 � � � � � � � � ! � � � � 	
 � � � �

� � � /
8
8
8
8
6

� � � 6
8
8
6
6
�

� � � 8
8
6
8
6
�

? � � � � �
 � 0 � � � � � � # 	 � � � � � � * � 	 � � � � ! !
? � � � 0 8 � � � 	 , � � � � 	 � � � 3 8
? � � � 0 8 J � 0 6 � � � 	 , � � � � 	 � � � 3 8 J � 3 6
? � � � 0 8 J � 0 / � � � 	 , � � � � 	 � � � 3 8 J � 3 / �
? � � � 0 8 J � 0 9 � � � 	 , � � � � 	 � � � 3 8 J � 3 9

7 � � � � ! � � � � � � � � - � � � � � � � ! � 	 �
6 ? � � �
 � � � � � � ! � � � � � � � � - � � � � � � � * � � � � � � � � - � � � � � � � F 	 �
 � � � � � � � � � � + � � � � � � �
8 ? � � � � � � ! � � � � � � � � - � � � � � � � * � � � � � � � � - � � � � � � � � � � � �

�
 	 �
 �
 # � � � � � � � � � - � � � � � �

8 � � � 6 � � � 8 � ? � �
 	 �

8 � � � 6 � ? � � � � �
 � � � � � � � � - � �
 � � � 	 � � � � �
 � 7 � � 0 �
 � � G 6 G

7 � � 0

rupt control register, and if the interrupts are enabled, an appropriate internal interrupt signal will

be generated. This A/D internal interrupt signal will direct the program flow to the associated A/D in-

ternal interrupt address for processing. If the A/D internal interrupt is disabled, the microcontroller

can be used to poll the EOCB bit in the ADCR register to check whether it has been cleared as an

alternative method of detecting the end of an A/D conversion cycle.

A/D Converter Clock Source Register � ACSR

The clock source for the A/D converter, which originates from the system clock fSYS, is first divided

by a division ratio, the value of which is determined by the ADCS1 and ADCS0 bits in the ACSR

register.

Although the A/D clock source is determined by the system clock fSYS, and by bits ADCS1 and

ADCS0, there are some limitations on the maximum A/D clock source speed that can be selected.

As the minimum value of permissible A/D clock period tAD is 1�s, for system clock speeds in ex-

cess of 2MHz, the ADCS1 and ADCS0 bits should not be set to
00
. Doing so will give A/D clock

periods that are less than 1�s which may result in inaccurate A/D conversion values. Refer to the

following table for examples, where values marked with an asterisk * are not permissible as they

are less than the specified minimum A/D Clock Period.

fSYS

A/D Clock Period (tAD)

ADCS1, ADCS0=00
(fSYS/2)

ADCS1, ADCS0=01
(fSYS/8)

ADCS1, ADCS0=10
(fSYS/32)

ADCS1, ADCS0=11

1MHz 2�s 8�s 32�s Undefined

2MHz 1�s 4�s 16�s Undefined

4MHz 500ns* 2�s 8�s Undefined

8MHz 250ns* 1�s 4�s Undefined

A/D Clock Period Examples

A/D Input Pins

All of the A/D analog input pins are pin-shared with the I/O pins on Port B. The PCR2~PCR0 bits in

the ADCR register, not configuration options, determine whether the input pins are setup as nor-

mal Port B input/output pins or whether they are setup as analog inputs. In this way, pins can be

changed under program control to change their function from normal I/O operation to analog in-

puts and vice versa. Pull-high resistors, which are setup through configuration options, apply to

the input pins only when they are used as normal I/O pins, if setup as A/D inputs the pull-high resis-

tors will be automatically disconnected. Note that it is not necessary to first setup the A/D pin as an

Chapter 1 Hardware Structure

49

� � � � � � � � � � � � �

� � � � �
 � � � � � � � � - � �
 � � � � � � �) � � � � � � �

, 5 , 8

� 7 � � � � � � 6 � � � � 8

� � � � 6
8
8
6
6

� � � � 8
8
6
8
6

? � �
 �
 � � � � � � �) � /
? � �
 �
 � � � � � � �) � :
? � �
 �
 � � � � � � �) � 9 /
? � � � � � ! � � � �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

. � � �
 � �
 � � � � � � � � � � � � �

input in the PBC port control register to enable the A/D input, when the PCR2~PCR0 bits enable

an A/D input, the status of the port control register will be overridden. The VDD power supply pin is

used as the A/D converter reference voltage, and as such analog inputs must not be allowed to ex-

ceed this value. Appropriate measures should also be taken to ensure that the VDD pin remains

as stable and noise free as possible.

Summary of A/D Conversion Steps

The following summarizes the individual steps that should be executed in order to implement an

A/D conversion process.

� Step 1

Select which pins on Port B are to be used as A/D inputs and configure them as A/D input pins

by correctly programming the PCR2~PCR0 bits in the ADCR register.

� Step 2

Select which channel is to be connected to the internal A/D converter by correctly programming

the ACS2~ACS0 bits which are also contained in the ADCR register.

� Step 3

Select the required A/D conversion clock by correctly programming bits ADCS1 and ADCS0 in

the ACSR register.

� Step 4

If the interrupts are to be used, the interrupt control registers must be correctly configured to en-

sure the A/D converter interrupt function is active. Depending upon which device is used, the

master interrupt control bit, EMI, in either the INTC or INTC0 interrupt control register must be

set to
1
 and the A/D converter interrupt bit, EADI, in either the INTC, INTC0 or INTC1 register

must also be set to
1
.

� Step 5

The analog to digital conversion process can now be initialized by setting the START bit in the

ADCR register to from
0
 to
1
 and then to
0
 again. Note that this bit should have been origi-

nally set to
0
.

� Step 6

To check when the analog to digital conversion process is complete, the EOCB bit in the ADCR

register can be polled. The conversion process is complete when this bit goes low. When this

occurs the A/D data registers ADRL and ADRH can be read to obtain the conversion value. As

an alternative method if the interrupts are enabled and the stack is not full, the program can wait

for an A/D interrupt to occur.

Note When checking for the end of the conversion process, if the method of polling the EOCB bit in the

ADCR register is used, step 4 above can be omitted.

A/D Type MCU

50

The following timing diagram shows graphically the various stages involved in an analog to digital

conversion process and its associated timing.

The setting up and operation of the A/D converter function is fully under the control of the applica-

tion program as there are no configuration options associated with the A/D converter. After an A/D

conversion process has been initiated by the application program, the microcontroller internal

hardware will begin to carry out the conversion, during which time the program can continue with

other functions. There are two methods to determine when the A/D conversion process is com-

plete. The first is for the application program to poll the EOCB bit in the ADCR register, while the

second method is to await an A/D internal interrupt to occur. The following two short program ex-

amples illustrate both of these methods. Note that the program is based on the HT46R22/

HT46C22 devices.

Example: using EOCB Polling Method to detect end of conversion

clr INTC0.3 ; disable A/D interrupt in interrupt control
; register

mov a,00100000B
mov ADCR,a ; setup ADCR register to configure Port PB0~PB3

; as A/D inputs and select AN0 to be connected
; to the A/D converter

mov a,00000001B
mov ACSR,a ; setup the ACSR register to select fSYS/8 as

; the A/D clock

Start_conversion:
clr ADCR.7
set ADCR.7 ; reset A/D
clr ADCR.7 ; start A/D

Polling_EOC:
sz ADCR.6 ; poll the ADCR register EOCB bit to detect end

; of A/D conversion
jmp polling_EOC ; continue polling

Chapter 1 Hardware Structure

51

5 4
 � �

� � � � � � � - � � � � � � �
 � � �

� 5 4
 � �

� � � � � � � - � � � � � � �
 � � �

8 8 8 0

8 8 8 0

6 8 8 0

8 6 8 0

8 8 8 0

� � � � �

7 � � 0

� � � / J � � � 8

� � � / J � � � 8

� � F � � * � �
� � � �

7 � � � � ! � � � �
� � � - � � � � � �6 ? � � � ! � � � � � 0 � � � � ! � � � � 	
 � � �

/ ? � � � � � �
 � 	 � 	 � � � � � # 	 � � � �

6 " � � 0 � + � �
 � � �
 � + � 	 � � � � � �
/ " � � � � � � � � - � �
 � � � � � � + � F � � � � � � ! !
� � � �
 � � � � � � � � � + � F � � � � � � � � � +
 � � �

� � � � � � � �) � � � �
 � , � � ! � > � � / @ � ! � > � � : � � � � ! � > � � 9 /3 �
 � ? �

�
 	 �
 � � ! � � � �
� � � - � � � � � �

� � � �
 � � � �
� � � - � �
 � �

6 8 8 0

8 8 8 0

�
 	 �
 � � ! � � � �
� � � - � � � � � �

� � � �
 � � � �
� � � - � �
 � �

� � � � � 	 � + � � � � �
 � � �
� � 9 /
 � � �

� � � � � � � � � � � � � � �
 � � �
 � � � � �
 � � � � � � � � � �

� � � �
 � � 	 � �

� � � � � 	 � + � � � � �
 � � �
� � 9 /
 � � �

7 � � � � ! � � � �
� � � - � � � � � �

A/D Conversion Timing

mov a,ADRH ; read conversion result from the high byte
; ADRH register

mov adrh_buffer,a ; save result to user defined register
mov a,ADRL ; read conversion result from the low byte ADRL

; register
mov adrl_buffer,a ; save result to user defined register

:
:

jmp start_conversion ; start next A/D conversion

Example: using Interrupt method to detect end of conversion

set INTC0.0 ; interrupt global enable
set INTC0.3 ; enable A/D interrupt in interrupt control

; register
mov a,00100000B
mov ADCR,a ; setup ADCR register to configure Port PB0~PB3

; as A/D inputs and select AN0 to be connected
; to the A/D converter

mov a,00000001B
mov ACSR,a ; setup the ACSR register to select fSYS/8 as

; the A/D clock

start_conversion:
clr ADCR.7
set ADCR.7 ; reset A/D
clr ADCR.7 ; start A/D

:
:

; interrupt service routine
EOC_service routine:

mov a_buffer,a ; save ACC to user defined register
mov a,ADRH ; read conversion result from the high byte

; ADRH register
mov adrh_buffer,a ; save result to user defined register
mov a,ADRL ; read conversion result from the low byte ADRL

; register
mov adrl_buffer,a ; save result to user defined register

clr ADCR.7
set ADCR.7 ; reset A/D
clr ADCR.7 ; start A/D

mov a,a_buffer ; restore ACC from temporary storage
reti

A/D Transfer Function

As the HT46R47/HT46C47 and HT46R22/HT46C22 devices each contain a 9-bit A/D converter,

their full-scale converted digitized value is equal to 1FFH. Since the full-scale analog input value is

equal to the VDD voltage, this gives a single bit analog input value of VDD/512. In the case of the

HT46R23/HT46C23 and HT46R24/HT46C24 devices, which each contain a 10-bit A/D converter,

their full-scale converted digitized value is equal to 3FFH, giving a single bit analog input value of

VDD/1024. The following graphs show the ideal transfer function between the analog input value

and the digitized output value for both the 9-bit and 10-bit A/D converters.

52

A/D Type MCU

Note that to reduce the quantization error, a 0.5 LSB offset is added to the A/D Converter input. Ex-

cept for the digitized value 0, the subsequent digitized values will change at a point 0.5 LSB below

where they would change without the offset , and the last full scale digitized value will change at a

point 1.5 LSB below the VDD.

The A/D Converter has a maximum of �1 LSB Integral Non-Linearity Error which describes the de-

parture from the ideal linear transfer function.

Chapter 1 Hardware Structure

53

6 . 7 B

' � � � � � � � � � (

� � � � � � � - � � � � � �
� � � � �

6 . . B

6 . � B

8 9 B

8 / B

8 6 B

8 " 2 � % � 0

8 6 / 9 2 8 ; 2 6 8 2 6 6 2 6 /

� � 	 � � � � � � + �
 � & � �
 	 � �

6 " 2 � % � 0

& � �

2 6 /

Ideal A/D Transfer Function � HT46R47/HT46C47 and HT46R22/HT46C22

9 . 7 B

' � � � � � � � � � (

� � � � � � � - � � � � � �
� � � � �

9 . . B

9 . � B

8 9 B

8 / B

8 6 B

8 " 2 � % � 0

8 6 / 9 6 8 / 6 6 8 / / 6 8 / 9 6 8 / 1

� � 	 � � � � � � + �
 � & � �
 	 � �

6 " 2 � % � 0

& � �

6 8 / 1

Ideal A/D Transfer Function � HT46R23/HT46C23 and HT46R24/HT46C24

I
2
C Bus Serial Interface

The I2C bus is a bidirectional 2-wire communication interface originally developed by Philips Semi-

conductors. The possibility of transmitting and receiving data on only 2 lines offers many new appli-

cation possibilities for microcontroller based applications and for this reason, with the exception of

the HT46R47/HT46C47 devices, an I2C bus is implemented in each of the microcontrollers in the

Holtek A/D MCU range. The I2C bus function is selectable via a configuration option.

There are two lines associated with the I2C bus, the first is known as SDA and is the Serial Data

line, the second is known as SCL line and is the Serial Clock line. As many devices may be con-

nected together on the same bus, their outputs are both open drain types. For this reason it is nec-

essary that external pull-high resistors are connected to these outputs. Note that no chip select

line exists, as each device on the I2C bus is identified by a unique address which will be transmit-

ted and received on the I2C bus.

When two devices communicate with each other on the bidirectional I2C bus, one is known as the

master device and one as the slave device. Both master and slave can transmit and receive data,

however, it is the master device that has overall control of the bus. For the Holtek microcontrollers,

which only operate in slave mode, there are two methods of transferring data on the I2C bus, the

slave transmit mode and the slave receive mode. Four registers exist to control the I2C bus and its

associated data transfer, HADR, HCR, HSR and HDR. Communication on the I2C bus requires

four steps, a START signal, a slave address transmission, a data transmission and finally a STOP

signal.

54

A/D Type MCU

� / � � � 	
 	 � � � � � �
 � �
' B � � (

� � 	 - � � � � � � � � � � � � � � �
 � �
' B � � � (

� # � !
 � � � � � �
 � �

B � �
� � � � �
 � � � � � � �
 � � �

�

�

� � � � � � � � � 	
 � #
' B � � � (� / � � � �
 � � � � +

� � %

� � �
� 	
 	 � � � � ' � � � % � 0 (

� 	
 	 � � �
 � ' . � � � � � � 0 (

� � 	 � � � �
 � � � � � � - �
� � �
 � � � � � �

B � . @ � : * , �
 � � 	
 	 � � � � + � �
 �

B 0 0 @ � � �
 � �
 � �
 	 �
 � � � � �
 � +

� 	
 	 � 0 � �

� � � � � � �
� � � + 	 � 	
 � �

� � � D @ � 7 � 	 , � � � � � � 	 , � � � � �) � � F � � � � �

� � � @ � � � 	 � � F � �
 � � � � 	 - �

I
2
C Bus Slave Address Register � HADR

The HADR register is the location where the slave address of the microcontroller is stored. Bits

1~7 of the HADR register define the microcontroller slave address. Bit 0 is not implemented. When

a master device, which is connected to the I2C bus, sends out an address which matches the slave

address in the HADR register, the microcontroller slave device will be selected.

I
2
C Bus Input/Output Data Register � HDR

The HDR register is the I2C bus input/output data register. Before the microcontroller writes data to

the I2C bus, the actual data to be transmitted must be placed in the HDR register. After the data is

received from the I2C bus, the microcontroller can read it from the HDR register. Any transmission

of data to the I2C bus or reception of data from the I2C bus must be made via the HDR register.

I
2
C Bus Control Register � HCR

The I2C bus control register HCR contains three bits. Bit 7, known as the HEN bit, determines if the

I2C bus function is enabled or disabled, this bit must be set if the I2C bus requires data transfer. Bit

4, known as the HTX bit, determines whether the device is in the transmit mode or receive mode,

and must be set high if the device is to be setup as a transmitter. Bit 3, known as the TXAK bit, is

the transmit acknowledge bit. After the receipt of 8 bits of data, this bit will be transmitted to the I2C

bus on the 9th clock. To continue receiving more data, this bit has to be reset to
0
 before more

data is received.

I
2
C Bus Status Register � HSR

The I2C bus register HSR is an 8-bit status register in which five bits are utilized. Bit 7, known as

HCF, is set to
0
 when a data byte is being transferred, after completion of the data transfer the bit

will be set to
1
. The HAAS bit, which is bit 6, will be set to
1
 if the transmitted address and the

slave address of the device match and if the I2C interrupt request flag is set to
1
. If the interrupts

are enabled and the stack is not full, a subroutine call to 10H will occur. Writing data to the I2C bus

Chapter 1 Hardware Structure

55

� � � � � � � � � � � �
, 5 , 8

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� � 	 � � � �
 � 	 �) � � F � � � � � � ! � 	 �
6 ? � � � � �
 � 	 �) � � F � � � � �
8 ? � 	 �) � � F � � � � �

� � 	 � � � �
 � � � � � � - � � � � � �
6 ? �
 � 	 � � � �
 � � � � �
8 ? � � � � � � - � � � � � �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� / � � 0 � � � ! � � �
 � � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

B 7 3 � � � DB � �

� � � � � � � � � � � � �
, 5 , 8

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� � 	 - � � 	 � � � � � �

will clear the HAAS bit. Also, if the transmitted address on the bus and the slave address of the de-

vice do not match, then the HAAS bit will be reset to
0
.

Bit 5, known as HBB, will be set to
1
 if the I2C bus is busy, which will occur when a START signal

is detected. The HBB bit will be cleared to
0
 if the bus is free which will occur when a STOP sig-

nal is detected. Bit 2, which is the SRW or Slave Read/Write bit, determines whether the master de-

vice wishes to transmit or receive data from the I2C bus. When the transmitted address and slave

address match, that is when the HAAS bit is set to
1
, the device will check the SRW bit to deter-

mine whether it should be in transmit mode or receive mode. If the SRW bit is equal to
1
 the mas-

ter is requesting to read data from the bus, so the device should be in transmit mode. When the

SRW bit is equal to
0
, the master will write data to the bus, therefore the device should be in re-

ceive mode to read this data.

Bit 0, is the Receive Acknowledge bit and known as RXAK. When the RXAK bit has been reset to

0
 it means that a correct acknowledge signal has been received at the 9th clock, after 8 bits of

data have been transmitted. When in the transmit mode, the transmitter checks the RXAK bit to de-

termine if the receiver wishes to receive the next byte. The transmitter will therefore continue send-

ing out data until the RXAK bit is set to
1
. When this occurs, the transmitter will release the SDA

line to allow the master to send a STOP signal to release the bus.

I
2
C Bus Communication

Communication on the I2C bus requires four separate steps, a START signal, a slave device ad-

dress transmission, a data transmission and finally a STOP signal. When a START signal is

placed on the I2C bus, all devices on the bus will receive this signal and be notified of the imminent

arrival of data on the bus. The first seven bits of the data will be the slave address with the first bit

being the MSB. If the address of the microcontroller matches that of the transmitted address, the

HAAS bit in the HSR register will be set and an I2C interrupt will be generated. After entering the in-

terrupt service routine, the microcontroller slave device must first check the condition of the HAAS

bit to determine whether the interrupt source originates from an address match or from the comple-

tion of an 8-bit data transfer. During a data transfer, note that after the 7-bit slave address has

56

A/D Type MCU

� � � � � � � � � � � �
, 5 , 8

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� � � � � - � � 	 �) � � F � � � � � � ! � 	 �
6 ? � � �
 � 	 �) � � F � � � � � �
8 ? � 	 �) � � F � � � � � �

� 	 �
 � � � � 	
 	 � � � 	 � � F � �
 � � � � L � � �
 � ! � 	 �
6 ? � � � L � � �
 � � 	
 	 � � � 	 �
8 ? � � � L � � �
 � � 	
 	 � F � �
 �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� / � � 0 � � � , � �
 � ! � 	 �
6 ? � , � �

8 ? � � �
 � , � �

B � . B 0 0B � � � � � � � � � D

� 	 � � � � � � 	 � � � � � � � � 	
 � # � � � ! � 	 �
6 ? � � 	
 � # � �
8 ? � � �
 � � 	
 � # � �

� 	
 	 �
 � 	 � � ! � � � ! � 	 �
6 ? �
 � 	 � � ! � � � � � � + � �
 �
8 ? �
 � 	 � � ! � � � � �
 � � � � + � �
 �

been transmitted, the following bit, which is the 8th bit, is the read/write bit whose value will be

placed in the SRW bit. This bit will be checked by the microcontroller to determine whether to go

into transmit or receive mode. Before any transfer of data to or from the I2C bus, the

microcontroller must initialize the bus, the following are steps to achieve this:

� Step 1

Write the slave address of the microcontroller to the I2C bus address register HADR.

� Step 2

Set the HEN bit in the I2C bus control register to
1
 to enable the I2C bus.

� Step 3

Set the EHI bit of the interrupt control register to enable the I2C bus interrupt.

 Start Signal

The START signal can only be generated by the master device connected to the I2C bus and not

by the microcontroller, which is only a slave device. This START signal will be detected by all de-

vices connected to the I2C bus. When detected, this indicates that the I2C bus is busy and there-

fore the HBB bit will be set. A START condition occurs when a high to low transition on the SDA line

takes place when the SCL line remains high.

 Slave Address

The transmission of a START signal by the master will be detected by all devices on the I2C bus.

To determine which slave device the master wishes to communicate with, the address of the slave

device will be sent out immediately following the START signal. All slave devices, after receiving

this 7-bit address data, will compare it with their own 7-bit slave address. If the address sent out by

the master matches the internal address of the microcontroller slave device, then an internal I2C

bus interrupt signal will be generated. The next bit following the address, which is the 8th bit, de-

fines the read/write status and will be saved to the SRW bit of the HSR register. The device will

then transmit an acknowledge bit, which is a low level, as the 9th bit. The microcontroller slave de-

vice will also set the status flag HAAS when the addresses match.

As an I2C bus interrupt can come from two sources, when the program enters the interrupt subrou-

tine, the HAAS bit should be examined to see whether the interrupt source has come from a

Chapter 1 Hardware Structure

57

� � � � � � � � � � 	 �
! � � � � � 	 �
 � �

� � � � � � � 	 - � � 	 � � � � � �
	 � � � � � � � , �
 � ! � � � � � 	 �
 � �

� �) � � F � � � � �
! � � � � � � 	 - �

� � � � � � 	
 	 � ,

 �
! � � � � � 	 �
 � �

� �) � � F � � � � �
! � � � � � � 	 - �

� � � � � � � � � 	 �
! � � � � � 	 �
 � �

matching slave address or from the completion of a data byte transfer. When a slave address is

matched, the device must be placed in either the transmit mode and then write data to the HDR

register, or in the receive mode where it must implement a dummy read from the HDR register to

release the SCL line.

 SRW Bit

The SRW bit in the HSR register defines whether the microcontroller slave device wishes to read

data from the I2C bus or write data to the I2C bus. The microcontroller should examine this bit to

determine if it is to be a transmitter or a receiver. If the SRW bit is set to
1
 then this indicates that

the master wishes to read data from the I2C bus, therefore the microcontroller slave device must

be setup to send data to the I2C bus as a transmitter. If the SRW bit is
0
 then this indicates that

the master wishes to send data to the I2C bus, therefore the microcontroller slave device must be

setup to read data from the I2C bus as a receiver.

 Acknowledge Bit

After the master has transmitted a calling address, any slave device on the I2C bus, whose own in-

ternal address matches the calling address, must generate an acknowledge signal. This acknowl-

edge signal will inform the master that a slave device has accepted its calling address. If no

acknowledge signal is received by the master then a STOP signal must be transmitted by the mas-

ter to end the communication. When the HAAS bit is high, the addresses have matched and the

microcontroller slave device must check the SRW bit to determine if it is to be a transmitter or a re-

ceiver. If the SRW bit is high, the microcontroller slave device should be setup to be a transmitter

so the HTX bit in the HCR register should be set to
1
, if the SRW bit is low then the

microcontroller slave device should be setup as a receiver and the HTX bit in the HCR register

should be set to
0
.

58

A/D Type MCU

� 	
 	

6 8 6 � � � � � � �8 8 6 � � � � � � � 88

6 8 8 6 8 6 86 6

� K �
 	 �
 � ' 6 � , �
 (

� � K � � 	 - � � � � � � � � � � ' 5 � , �
 � (

� � K � � � � , �
 � ' 6 � , �
 (

� K � � 	 - � � � � - � � � � � � � � � 	 �) � � F � � � � � � , �
 � ' 6 � , �
 (

� K � 	
 	 � ' : � , �
 � (

� K � � D � ' � � � D � , �
 � ! � � �
 � 	 � � � �

 � � @ � � � � D � , �
 � ! � � � � � � � � - � � � 6 � , �
 (

� K �
 � + � ' 6 � , �
 (

� � %

�
 	 �

� � �

� � � � � D

� � D �
 � +

� � %

� � �

� �

� � 	 - � � � � � � � � �

I
2
C Communication Timing Diagram

 Data Byte

The transmitted data is 8-bits wide and is transmitted after the slave device has acknowledged re-

ceipt of its slave address. The order of serial bit transmission is the MSB first and the LSB last. Af-

ter receipt of 8-bits of data, the receiver must transmit an acknowledge signal, level
0
, before it

can receive the next data byte. If the transmitter does not receive an acknowledge bit signal from

the receiver, then it will release the SDA line and the master will send out a STOP signal to release

control of the I2C bus. The corresponding data will be stored in the HDR register. If setup as a

transmitter, the microcontroller slave device must first write the data to be transmitted into the

HDR register. If setup as a receiver, the microcontroller slave device must read the transmitted

data from the HDR register.

 Receive Acknowledge Bit

When the receiver wishes to continue to receive the next data byte, it must generate an acknowl-

edge bit, known as TXAK, on the 9th clock. The microcontroller slave device, which is setup as a

transmitter will check the RXAK bit in the HSR register to determine if it is to send another data

byte, if not then it will release the SDA line and await the receipt of a STOP signal from the master.

Chapter 1 Hardware Structure

59

� � %

� � �

�
 	 �
 � , �
 � � � 	
 	
� �
 	 , � �

� � � 	
 	
� � 	 � � � F
� # 	 � � �

�
 � + � , �

Data Timing Diagram

�
 	 �

� � � � �
 � � � � 	 - �
� � � � � � � � � �
 � � B � � �

� 7 � � B 7 3

� � � � / � � 0 � �
� �
 � � � � +
 K M

�

7 � 	 , � �� � � 	 , � �

� � � � 7 � � 7 B �
� 	 �
 � ! � � � � �
 � � � � +

� �
 � � � 	 � � � � � � � � 	 �

� % � � 7 B � �
� � � � � B � . �
 � � � � � � � � �

F # � � �
 � � � � �
 � � � / � � 0 � � � � � � �

� �
 � � � 	 � � � � � � � � 	 �

I
2
C Bus Initialization Flow Chart

Interrupts

The A/D series of microcontrollers each contain a range of both external and internal interrupt func-

tions. The external interrupt is controlled by the action of the external pin INT which is present on

all devices. Internal functions such as the timer counter, A/D converter and I2C interface all utilize

the internal interrupt function for their operation.

Interrupt Registers

For the HT46R47/HT46C47 devices, which do not contain an internal I2C interface and contain

only a single timer, one 8-bit interrupt control register, known as INTC, is sufficient to control all the

required operations. As the HT46R22/HT46C22, HT46R23/HT46C23 and HT46R24/HT46C24 de-

vices both contain an I2C interface, a single 8-bit interrupt control register is insufficient to control

all the interrupt control features. For this reason two interrupt control registers are provided, known

as INTC0 and INTC1.

Once an interrupt subroutine is serviced, all the other interrupts will be blocked, by clearing the

EMI bit. This scheme may prevent any further interrupt nesting. Other interrupt requests may oc-

cur during this interval but only the interrupt request flag is recorded. If another interrupt requires

servicing while the program is in the interrupt service routine, the EMI bit should be set after enter-

60

A/D Type MCU

�
 	 �

B � � � K 6
M

B � � K 6
� � � � M

� � � K 6
� � � � � M

> � �3 �

> � � 3 �

� � � D K 6
M

> � �

3 �

3 �

� � 	 � � ! � � � � B � �

� 7 � �

> � �

� � � �
 � � � 	 �
! � � � � B � �

� 7 � �

� 7 � �

� � �
 � �
 � � B � �

� 7 � � B � �

� � �
 � �
 � � B � �
� � � �
 � � � 	 �
. � � � � B � �

� % � � B � �
� % � � � � � D

� 7 � � � 7 � �

� % � � B � �
� % � � � � � D

I
2
C Bus ISR Flow Chart

ing the routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowl-

edged, even if the related interrupt is enabled, until the SP is decremented. If immediate service is

desired, the stack must be prevented from becoming full.

Differing from the other devices in the A/D series, the HT46R24/HT46C24 devices contain two in-

ternal timer counters. Although all the interrupt control functions can still be controlled by two inter-

rupt control registers, also known as INTC0 and INTC1, they have a slightly different structure

from the other devices.

Chapter 1 Hardware Structure

61

 2 �

 2 � � + �
� �
� 	 �
 � � � � �
 � � � � +
 � � � � , 	 � � � � 	 , � �
6 ? � � � � , 	 � � � � 	 , � �
8 ? � � � � , 	 � � � � � 	 , � �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

, 5 , 8

7 � � 7 7 � 7 � �

7 <
 � � � 	 � � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �
� � � � � � 7 - � �
 � � � � �
 � � � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

7 <
 � � � 	 � � � �
 � � � � +
 � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �
� � � � � � 7 - � �
 � � � � �
 � � � � �
 � � � � +
 � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �
� � � � � � � - � �
 � � � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �

7 � .� � .

� � � � � � � - � �
 � � � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

7 � � �� � .

 2 � � 	 �
� �
� / � � 0 � � � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

, 5 , 8

7 B �B � .

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� / � � 0 � � � � �
 � � � � +
 � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �

The external interrupt has the capability of waking up the processor when in the HALT mode. As

an interrupt is serviced, a control transfer occurs by pushing the Program Counter onto the stack,

followed by a branch to a subroutine at a specified location in the Program Memory. Only the Pro-

gram Counter is pushed onto the stack. If the contents of the accumulator, status register or other

registers are altered by the interrupt service routine, which may corrupt the desired control se-

quence, then the contents should be saved in advance.

62

A/D Type MCU

 2 � � + �

� 	 �
 � � � � �
 � � � � +
 � � � � , 	 � � � � 	 , � �
6 ? � � � � , 	 � � � � 	 , � �
8 ? � � � � , 	 � � � � � 	 , � �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

, 5 , 8

7 � 8 � 7 7 � 7 � �7 � .� � 8 .

� � � � � � 7 - � �
 � � � � �
 � � � 6 � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

7 � 6 �� 6 .

7 <
 � � � 	 � � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

� � � � � � 7 - � �
 � � � � �
 � � � 8 � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

7 <
 � � � 	 � � � �
 � � � � +
 � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �

� � � � � � 7 - � �
 � � � � �
 � � � 8 � � �
 � � � � +
 � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �

� � � � � � 7 - � �
 � � � � �
 � � � 6 � � �
 � � � � +
 � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �

 2 � � 	 �

� � � � � � � - � �
 � � � � �
 � � � � +
 � � � 	 , � �
6 ? � � � 	 , � �
8 ? � � � � 	 , � �

, 5 , 8

7 � � �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� � .� B � .

� / � � 0 � � � � �
 � � � � +

6 ? � � � 	 , � �
8 ? � � � � 	 , � �

7 B �

3 �
 � � � + � � � � �
 � � @ � � � 	 � � 	 � � G 8 G

� � � � � � � - � �
 � � � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �

� / � � 0 � � � � �
 � � � � +
 � � � L � � �
 � ! � 	 �
6 ? � 	 �
 � - �
8 ? � � � 	 �
 � - �

The various interrupt enable bits, together with their associated request flags, are shown in the fol-

lowing diagram with their order of priority.

Note In the figure, the T1F interrupt request flag and the ET1I interrupt enable bit refer to the HT46R24/

HT46C24 devices, which have two timers. For the HT46R47/HT46C47, HT46R22/HT46C22 and

HT46R23/HT46C23, which only have one timer, the Timer/Event Counter 0 represents the single

timer, known as TMR and has interrupt request flag known as TF and enable bit known as ETI.

Interrupt Priority

Interrupts, occurring in the interval between the rising edges of two consecutive T2 pulses, will be

serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In case of

simultaneous requests, the following table shows the priority that is applied. These can be masked

by resetting the EMI bit.

Interrupt Source
HT46R47
HT46C47
Priority

HT46R22
HT46C22
Priority

HT46R23
HT46C23
Priority

HT46R24
HT46C24
Priority

External Interrupt 1 1 1 1

Timer/Event Counter or
Timer/Event Counter 0 Overflow

2 2 2 2

Timer/Event Counter 1 Overflow N/A N/A N/A 3

A/D Converter Interrupt 3 3 3 4

I2C Bus Interrupt N/A 4 4 5

Note Only the HT46R24/HT46C24 devices have two internal timers. The other devices in the series

have only one internal timer.

Chapter 1 Hardware Structure

63

� �
 � � 	
 � � 	 � �
 � � � � 	 � � � � ,
 � � � �
� 	 � � 	 � �
 � � �
 � � � � � � � 	 � � � � ,
 � � � !
 F 	 � �

7 <
 � � � 	 � � � �
 � � � � +

� � L � � �
 � . � 	 � � 7 � .

� � � � � � 7 - � �
 � � � � �
 � � � 8
� �
 � � � � +
 � � � L � � �
 � . � 	 � � � 8 .

� � � � � � 7 - � �
 � � � � �
 � � � 6
� �
 � � � � +
 � � � L � � �
 � . � 	 � � � 6 .

7 7 �

7 � 8 �

7 � 6 �

7 � �

� �
 � � 	
 � � 	 � �
 � � � � 	 , � � � � ,
 � � � �
� 	 � � , � � 7 � 	 , � � � � � 	 � � 	 � �

� � � � � �

B � � #

% � F

� �
 � � � � +

� � � � � � �

� � � � � � � - � �
 � �
� �
 � � � � +
 � � � L � � �
 � . � 	 � � � � .

� / � � 0 � �
� �
 � � � � +
 � � � L � � �
 � . � 	 � � B � .

7 � � �

7 B �

Interrupt Scheme

In cases where both external and internal interrupts are enabled and where an external and inter-

nal interrupt occurs simultaneously, the external interrupt will always have priority and will there-

fore be serviced first. Suitable masking of the individual interrupts using the INTC register can

prevent simultaneous occurrences.

External Interrupt

For an external interrupt to occur, the corresponding external interrupt enable bit must be first set.

This is bit 1 of the INTC or INTC0 register and shown as EEI. An external interrupt is triggered by a

high to low transition of the INT line, after which the related interrupt request flag (EIF; bit 4 of the

INTC or INTC0) will be set. When the interrupt is enabled, the stack is not full and the external inter-

rupt is active, a subroutine call to location 04H will occur. The interrupt request flag EIF will be re-

set and the EMI bit will be cleared to disable other interrupts.

Timer/Event Counter Interrupt

For a timer generated internal interrupt to occur, the corresponding internal interrupt enable bit

must be first set. In the case of devices with a single timer, this is bit 2 of the INTC or INTC0 register

and is known as ETI. For devices with two timers, the Timer 0 interrupt enable is bit 2 and known

as ET0I while the Timer 1 interrupt enable is bit 3 and known as ET1I. An actual Timer/Event Coun-

ter interrupt will be initialized when the Timer/Event Counter interrupt request flag is set, caused by

a timer overflow. In the case of devices with a single timer, this is bit 5 of the INTC or INTC0 regis-

ter and is known as TF. In the case of devices with two timers, the Timer 0 request flag is bit 5 and

known as T0F, while the Timer 1 request flag is bit 6 and known as T1F. When the master interrupt

global enable bit is set, the stack is not full and the corresponding internal interrupt enable bit is

set, an internal interrupt will be generated when the timer overflows. This will create a subroutine

call to location 08H for devices with a single timer. For devices with two timers, a subroutine call to

location 08H will occur for Timer 0 and a subroutine call to location 0CH for Timer 1. When an inter-

nal interrupt occurs, the interrupt request flag, TF, T0F or T1F will be reset and the EMI bit will be

cleared to disable other interrupts.

A/D Interrupt

For an A/D interrupt to occur, the corresponding interrupt enable bit EADI must be first set. For the

HT46R47/HT46C47 devices, this is bit 3 of the INTC register, while for the HT46R22/HT46C22

and HT46R23/HT46C23 devices, this is bit 3 of the INTC0 register. For the HT46R24/HT46C24 de-

vices, this is bit 0 of the INTC1 register. An actual A/D interrupt will be initialized when the A/D con-

verter request flag ADF is set, a situation that will occur when an A/D conversion process has

completed. In the case of the HT46R47/HT46C47 devices, this is bit 6 of the INTC register, while

for the HT46R22/HT46C22 and HT46R23/HT46C23 devices, this is bit 6 of the INTC0 register.

For the HT46R24/HT46C24 devices, this is bit 4 of the INTC1 register. When the master interrupt

global enable bit is set, the stack is not full and the corresponding A/D interrupt enable bit is set, an

internal interrupt will be generated when the previously requested A/D conversion process fin-

ishes. With the exception of the HT46R24/HT46C24 devices, this will create a subroutine call to lo-

cation 0CH. For the HT46R24/HT46C24 devices, a subroutine call to location 10H will be created.

When an A/D interrupt occurs, the interrupt request flag ADF will be reset and the EMI bit will be

cleared to disable other interrupts.

64

A/D Type MCU

I
2
C Interrupt

For an I2C interrupt to occur, the corresponding interrupt enable bit EHI must be first set. For the

HT46R22/HT46C22 and HT46R23/HT46C23 devices, this is bit 0 of the INTC1 register, while for

the HT46R24/HT46C24 devices, this is bit 1 of the INTC1 register. An actual I2C interrupt will be ini-

tialized when the I2C interrupt request flag HIF is set, a situation that will occur when a matching

I2C slave address is received or from the completion of an I2C data byte transfer. In the case of the

HT46R22/HT46C22 and HT46R23/HT46C23 devices, this is bit 4 of the INTC1 register, while for

the HT46R24/HT46C24 devices, this is bit 5 of the INTC1 register. Note that as the

HT46R47/HT46C47 devices do not contain an I2C interface, their interrupt control register INTC

has no associated I2C enable bit or request flag. When the master interrupt global enable bit is set,

the stack is not full and the corresponding I2C interrupt enable bit is set, an internal interrupt will be

generated when a matching I2C slave address is received or from the completion of an I2C data

byte transfer. For the HT46R22/HT46C22 and HT46R23 HT46C23 devices, this will create a sub-

routine call to location 10H, while for the HT46R24/HT46C24 devices, a subroutine call to location

14H will be created. When an I2C interrupt occurs, the interrupt request flag HIF will be reset and

the EMI bit will be cleared to disable other interrupts.

Programming Considerations

The interrupt request flags, TF, T0F, T1F, EIF, ADF and HIF together with the interrupt enable bits

ETI, ET0I, ET1I, EEI, EADI and EHI form the interrupt control registers INTC, INTC0 and INTC1,

which are located in the Data Memory. By disabling the interrupt enable bits, a requested interrupt

can be prevented from being serviced, however, once an interrupt request flag is set, it will remain

in this condition in the INTC, INTC0 or INTC1 register until the corresponding interrupt is serviced

or until the request flag is cleared by a software instruction.

It is recommended that programs do not use the
CALL subroutine
 instruction within the interrupt

subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately

in some applications. If only one stack is left and the interrupt is not well controlled, the original con-

trol sequence will be damaged once a
CALL subroutine
 is executed in the interrupt subroutine.

Reset and Initialization

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside parameters. The most important reset condi-

tion is after power is first applied to the microcontroller. In this case, internal circuitry will ensure

that the microcontroller, after a short delay, will be in a well defined state and ready to execute the

first program instruction. After this power-on reset, certain important internal registers will be set to

defined states before the program commences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to begin program execution from the lowest

Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a re-

set condition when the microcontroller is running. One example of this is where after power has

been applied and the microcontroller is already running, the RES line is forcefully pulled low. In

such a case, known as a normal operation reset, some of the microcontroller registers remain un-

changed allowing the microcontroller to proceed with normal operation after the reset line is al-

Chapter 1 Hardware Structure

65

lowed to return high. Another type of reset is when the Watchdog Timer overflows and resets the

microcontroller. All types of reset operations result in different register conditions being setup.

Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the RES

reset is implemented in situations where the power supply voltage falls below a certain threshold.

Reset

There are five ways in which a microcontroller reset can occur, through events occurring both inter-

nally and externally:

 Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to

the microcontroller. As well as ensuring that the Program Memory begins execution from the first

memory address, a power-on reset also ensures that certain other registers are preset to known

conditions. All the I/O port and port control registers will power up in a high condition ensuring that

all pins will be first set to inputs.

Although the microcontroller has an internal RC reset function, due to unstable power on condi-

tions, an external RC network connected to the RES pin is generally recommended. This time de-

lay created by the RC network ensures that the RES pin remains low for an extended period while

the power supply stabilizes. During this time, normal operation of the microcontroller is inhibited.

After the RES line reaches a certain voltage value, the reset delay time tRSTD is invoked to provide

an extra delay time after which the microcontroller can begin normal operation. The abbreviation

SST in the figures stands for System Start-up Timer.

 RES Pin Reset

This type of reset occurs when the microcontroller is already running and the RES pin is forcefully

pulled low by external hardware such as an external switch. In this case as in the case of other re-

set, the Program Counter will reset to zero and program execution initiated from this point.

66

A/D Type MCU

� 7 �

� � � � � � � � * � �

� �
 � � � 	 � � � � � �

8 " ; � & � �

8 " 1 � & � �

 � � � �

RES Reset Timing Chart

� 7 �

& � �

� � � � � � � � * � �

� �
 � � � 	 � � � � � �

8 " ; � & � �

 � � � �

Power-On Reset Timing Chart

 Low Voltage Reset � LVR

The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the

device. If the supply voltage of the device drops to within a range of 0.9V~VLVR such as might occur

when changing the battery, the LVR will automatically reset the device internally. The LVR includes

the following specifications: For a valid LVR signal, a low voltage, i.e. a voltage in the range be-

tween 0.9V~VLVR must exist for greater than 1ms. If the low voltage state does not exceed 1ms,

the LVR will ignore it and will not perform a reset function.

 Watchdog Time-out Reset during Normal Operation

The Watchdog Time-out Reset during normal operation is the same as RES reset except that the

Watchdog Time-out flag TO will be set to 1.

 Watchdog Time-out Reset during HALT

The Watchdog Time-out Reset during HALT is a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Program Counter and the Stack Pointer will be

cleared to 0 and the TO flag will be set to 1. Refer to the A.C. Characteristics for tSST details.

The different types of resets described affect the reset flags in different ways. These flags known

as PDF and TO are located in the status register and are controlled by various microcontroller op-

erations such as the HALT function or Watchdog Timer. The reset flags are shown in the table:

TO PDF RESET Conditions

0 0 RES reset during power on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during HALT

u
 stands for unchanged

Chapter 1 Hardware Structure

67

� � � � � = / � � � � � = 9

7 <
 � � � 	 � � 7 - � �

� � � � � � � �

� � � � � � � � � �
 � �

� � � � � = 6

Low Voltage Reset Timing Chart

� � � � � � � � * � �

� � � � � � � � * � �

 � � �

WDT Time-out Reset during HALT Timing Chart

� � � � � � � � * � �

� � � � � � � � * � �

� �
 � � � 	 � � � � � �

 � � � �

WDT Time-out Reset during Normal Operation Timing Chart

The following table indicates the way in which the various components of the microcontroller are af-

fected after a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT Clear after reset, WDT begins counting

Timer/Event Counter All Timer Counters will be turned off

Prescaler The Timer Counter Prescaler will be cleared

Input/Output Ports All I/O ports will be setup as inputs

Stack Pointer Stack pointer will point to the top of the stack

The different kinds of reset all affect the internal registers of the microcontroller in different ways.

To ensure reliable continuation of normal program execution after a reset occurs, it is important to

know what condition the microcontroller is in after a particular reset occurs. The following table de-

scribes how each type of reset affects each of the microcontroller internal registers.

HT46R47/HT46C47

Register
Reset

(Power On)
RES or LVR

Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP � x x x x x x x � u u u u u u u � u u u u u u u � u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH � � x x x x x x � � u u u u u u � � u u u u u u � � u u u u u u

STATUS � � 0 0 x x x x � � u u u u u u � � 1 u u u u u � � 1 1 u u u u

INTC � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

TMR x u u u u u u u u

TMRC 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB � � ��� 1 1 1 1 � � ��� 1 1 1 1 � � ��� 1 1 1 1 � � ��� u u u u

PBC � � ��� 1 1 1 1 � � ��� 1 1 1 1 � � ��� 1 1 1 1 � � ��� u u u u

PD � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � u

PDC � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � u

PWM x u u u u u u u u

ADRL x � ��� � � � � x � ��� � � � � x � ��� � � � � u � ��� � � � �

ADRH x u u u u u u u u

ADCR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

ACSR 1 � ��� � � 0 0 1 � ��� � � 0 0 1 � ��� � � 0 0 u � ��� � � u u

u
 stands for unchanged

x
 stands for unknown

�
 stands for unimplemented

68

A/D Type MCU

HT46R22/HT46C22

Register
Reset

(Power On)
RES or LVR

Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP � x x x x x x x � u u u u u u u � u u u u u u u � u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH � � x x x x x x � � u u u u u u � � u u u u u u � � u u u u u u

STATUS � � 0 0 x x x x � � u u u u u u � � 1 u u u u u � � 1 1 u u u u

INTC0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

INTC1 � � � 0 � � � 0 � � � 0 � � � 0 � � � 0 � � � 0 � � � u � � � u

TMR x u u u u u u u u

TMRC 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � u u

PCC � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � u u

PD � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � u

PDC � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � 1 � � ��� � � � u

PWM x u u u u u u u u

HADR x x x x x x x � x x x x x x x � x x x x x x x � u u u u u u u �

HCR 0 ��� 0 0 � � � 0 ��� 0 0 � � � 0 ��� 0 0 � � � u ��� u u � � �

HSR 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 u u u � � u � u

HDR x u u u u u u u u

ADRL x � ��� � � � � x � ��� � � � � x � ��� � � � � u � ��� � � � �

ADRH x u u u u u u u u

ADCR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

ACSR 1 � ��� � � 0 0 1 � ��� � � 0 0 1 � ��� � � 0 0 u � ��� � � u u

u
 stands for unchanged

x
 stands for unknown

�
 stands for unimplemented

Chapter 1 Hardware Structure

69

HT46R23/HT46C23

Register
Reset

(Power On)
RES or LVR

Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP0 x x x x x x x x u

MP1 x x x x x x x x u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH � x x x x x x x � u u u u u u u � u u u u u u u � u u u u u u u

STATUS � � 0 0 x x x x � � u u u u u u � � 1 u u u u u � � 1 1 u u u u

INTC0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

INTC1 � � � 0 � � � 0 � � � 0 � � � 0 � � � 0 � � � 0 � � � u � � � u

TMRL x u u u u u u u u

TMRH x u u u u u u u u

TMRC 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC � � � 1 1 1 1 1 � � � 1 1 1 1 1 � � � 1 1 1 1 1 � � � u u u u u

PCC � � � 1 1 1 1 1 � � � 1 1 1 1 1 � � � 1 1 1 1 1 � � � u u u u u

PD � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � u u

PDC � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � 1 1 � � ��� � � u u

PWM0 x u u u u u u u u

PWM1 x u u u u u u u u

HADR x x x x x x x � x x x x x x x � x x x x x x x � u u u u u u u �

HCR 0 ��� 0 0 � � � 0 ��� 0 0 � � � 0 ��� 0 0 � � � u ��� u u � � �

HSR 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 u u u � � u � u

HDR x u u u u u u u u

ADRL x x ��� � � � � x x ��� � � � � x x ��� � � � � u u � � � � � �

ADRH x u u u u u u u u

ADCR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

ACSR 1 � ��� � � 0 0 1 � ��� � � 0 0 1 � ��� � � 0 0 u � ��� � � u u

u
 stands for unchanged

x
 stands for unknown

�
 stands for unimplemented

70

A/D Type MCU

HT46R24/HT46C24

Register
Reset

(Power On)
RES or LVR

Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP0 x x x x x x x x u

MP1 x x x x x x x x u

ACC x x x x x x x x u

PCL 0

BP � � � � � � � 0 � � � � � � � 0 � � � � � � � 0 � � � � � � � u

TBLP x x x x x x x x u

TBLH x x x x x x x x u

STATUS � � 0 0 x x x x � � u u u u u u � � 1 u u u u u � � 1 1 u u u u

INTC0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

INTC1 � � 0 0 � � 0 0 � � 0 0 � � 0 0 � � 0 0 � � 0 0 � � u u � � u u

TMR0H x u u u u u u u u

TMR0L x u u u u u u u u

TMR0C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

TMR1H x u u u u u u u u

TMR1L x u u u u u u u u

TMR1C 0 0 � 0 1 � � � 0 0 � 0 1 � � � 0 0 � 0 1 � � � u u � u u � � �

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC 1 u u u u u u u u

PCC 1 u u u u u u u u

PD 1 u u u u u u u u

PDC 1 u u u u u u u u

PF 1 u u u u u u u u

PFC 1 u u u u u u u u

PWM0 x u u u u u u u u

PWM1 x u u u u u u u u

PWM2 x u u u u u u u u

PWM3 x u u u u u u u u

HADR x x x x x x x � x x x x x x x � x x x x x x x � u u u u u u u �

HCR 0 ��� 0 0 � � � 0 ��� 0 0 � � � 0 ��� 0 0 � � � u ��� u u � � �

HSR 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 u u u � � u � u

HDR x u u u u u u u u

ADRL x x ��� � � � � x x ��� � � � � x x ��� � � � � u u � � � � � �

ADRH x u u u u u u u u

ADCR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

ACSR 1 � ��� � � 0 0 1 � ��� � � 0 0 1 � ��� � � 0 0 u � ��� � � u u

u
 stands for unchanged

x
 stands for unknown

�
 stands for unimplemented

Chapter 1 Hardware Structure

71

Oscillator

Various oscillator options offer the user a wide range of functions according to their various applica-

tion requirements. Two types of system clocks can be selected while various clock source options

for the Watchdog Timer are provided for maximum flexibility. All oscillator options are selected

through the configuration options.

System Clock Configurations

There are two methods of generating the system clock, using an external crystal/ceramic oscilla-

tor or an external RC network. The chosen method is selected through the configuration options.

System Crystal/Ceramic Oscillator

For the crystal oscillator configuration, the simple connection of a crystal across OSC1 and OSC2

will create the necessary phase shift and feedback for oscillation with no other external compo-

nents required. A ceramic resonator can be used instead of a crystal but two small value capaci-

tors should be connected between OSC1, OSC2 and ground.

The table below shows the C1, C2 and R1 values for various crystal/ceramic oscillating frequen-

cies.

Crystal or Resonator C1, C2 R1

4MHz Crystal 0pF 10k�

4MHz Resonator 10pF 12k�

3.58MHz Crystal 0pF 10k�

3.58MHz Resonator 25pF 10k�

2MHz Crystal & Resonator 25pF 10k�

1MHz Crystal 35pF 27k�

480kHz Resonator 300pF 9.1k�

455kHz Resonator 300pF 10k�

429kHz Resonator 300pF 10k�

The function of the resistor R1 is to ensure that the oscillator will switch off should low voltage

conditions occur. Such a low voltage, as mentioned here, is one which is less than the lowest

value of the MCU operating voltage. Note however that if the LVR is enabled then R1 can be re-

moved.

72

A/D Type MCU

� � � /

� � � 6

� /

� 6
� 6

Crystal/Ceramic Oscillator

System RC Oscillator

Using the external RC network as an oscillator requires that a resistor, with a value between 30k�

and 750k�, is connected between OSC1 and GND. The generated system clock divided by 4 will

be provided on OSC2 as an output which can be used for external synchronization purposes. Al-

though this is a cost effective oscillator configuration, the oscillation frequency can vary with VDD,

temperature and process variations on the chip itself and is therefore not suitable for applications

where timing is critical or where accurate oscillator frequencies are required. For the value of the

external resistor ROSC please refer to the Appendix section for typical RC Oscillator vs. Tempera-

ture and VDD characteristics graphics.

Note An internal capacitor together with the external resistor, ROSC, are the components which deter-

mine the frequency of the oscillator. The external capacitor shown on the diagram does not influ-

ence the frequency of oscillation. This external capacitor should be added to improve oscillator

stability if the open-drain OSC2 output is utilized in the application circuit.

Watchdog Timer Oscillator

The WDT oscillator is a fully self-contained free running on-chip RC oscillator with a typical period

of 65�s at 5V requiring no external components. When the device enters the power down mode,

the system clock will stop running but the WDT oscillator continues to free-run and to keep the

watchdog active. However, to preserve power in certain applications the WDT oscillator can be dis-

abled via a configuration option.

HALT and Wake-up in Power Down Mode

The HALT mode is initialized by the
HALT
 instruction and results in the following:

� The system oscillator will be turned off

� The contents of the on chip RAM and registers remain unchanged

� The WDT will be cleared and resume counting if the WDT clock source is selected to come from

the WDT oscillator

� All of the I/O ports remain unchanged

� The PDFflag is set and the TO flag is cleared

Chapter 1 Hardware Structure

73

� � � 6

� � � /! � > � � 1 � 3 � � � � � + � � � � � 	 � �

1 5 8 + .

& � �

� � � �

RC Oscillator

When the system enters the HALT mode the system oscillator will be stopped to reduce power con-

sumption. However, it is important to remember that if the internal WDT oscillator is enabled this

will keep running and result in a small amount of power being consumed. In addition if the A/D con-

verter is used, even though the system oscillator has been stopped there will still be some power

consumption associated with the A/D circuitry. Therefore to minimize power consumption when in

the HALT mode, the A/D converter should be first disabled by clearing all the PCR bits in the

ADCR register.

The system can leave the HALT mode by means of a reset, an external interrupt, an external fall-

ing edge signal on Port A or a WDT overflow. A reset will initialize a chip reset and a WDT overflow

will initialize a WDT time-out Reset from HALT but by examining the TO and PDF flags the source

of the reset can be determined. The PDF flag is cleared by a system power-up or executing the

CLR WDT
 instruction and is set when executing the
HALT
 instruction. The TO flag is set if a

WDT time-out occurs, and causes a wake-up that only resets the Program Counter and SP; the

other flags remain in their original status.

Port A wake-up and external interrupt wake-up methods can be considered as a continuation of

normal execution. Each bit in Port A can be independently selected to wake-up the device by con-

figuration option. Awakening from an I/O port stimulus, the program will resume execution at the

next instruction. If the system is woken up via an external interrupt, two possibilities may occur. If

the external interrupt is disabled or the external interrupt is enabled but the stack is full, the pro-

gram will resume execution at the next instruction. If the external interrupt is enabled and the stack

is not full, the regular interrupt response takes place. If the external interrupt request flag is set to

1
 before entering the HALT mode, the wake-up function of the related interrupt will be disabled.

Once a wake-up event occurs, it takes 1024 system clock periods to resume normal operation. In

other words, a dummy period will be inserted after a wake-up. If the wake-up results from an exter-

nal interrupt acknowledge signal, the actual interrupt subroutine execution will be delayed by one

or more cycles. If the wake-up results in the next instruction execution, this will be executed imme-

diately after the dummy period is finished.

Watchdog Timer

The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to

unknown locations, due to certain uncontrollable external events such as electrical noise. It oper-

ates by providing a
chip reset
 when the WDT counter overflows. The WDT clock is supplied by

one of two sources selected by configuration option: its own self contained dedicated internal

WDT oscillator or the instruction clock which is the system clock divided by 4. Note that if the WDT

configuration option has been disabled, then any instruction relating to its operation will result in

no operation.

In the A/D series of microcontrollers, all watchdog timer options, such as enable/disable, WDT

clock source, and if applicable clock source division ratios are all selected through configuration

options. There are no internal registers associated with the WDT in the A/D series. One of the

WDT clock sources is an internal oscillator which has an approximate period of 65�s at a supply

voltage of 5V. However, it should be noted that this specified internal clock period can vary with

VDD, temperature and process variations. The other WDT clock source option is the instruction

clock which is the system clock divided by four (fSYS/4). Whether the WDT clock source comes

from its own internal WDT oscillator, or from the instruction clock, it is further divided by an internal

74

A/D Type MCU

counter to give longer watchdog time-outs. In the case of the HT46R47/HT46C47 devices, this divi-

sion ratio is fixed by an internal counter which gives a 215 fixed division ratio. In the case of the

other devices, the division ratio can be varied by selecting different configuration options to give a

212 to 215division ratio range. As the clear instruction only resets the last stage of the counter

chain, for this reason the actual division ratio and corresponding WDT time-out can vary by a fac-

tor of two. The exact division ratio depends upon the residual value in the WDT counter before the

clear instruction is executed. As an example, if a WDT time out value of 212 (4096) is chosen in the

configuration options, the actual time out value can range from fS/212 to fS/213, where fS represents

the WDT clock source. As mentioned earlier this clock source can come from either the internal

WDT oscillator or from the system clock divided by four.

If the instruction clock is used as the clock source, it should be noted that when the system enters

the power-down mode, then the instruction clock is stopped and the WDT will lose its protecting

purposes. In such cases, the system can only be restarted via external logic. For systems that op-

erate in noisy environments, using the internal WDT oscillator is strongly recommended.

Under normal program operation, the WDT time-out will initialize a
chip reset
 and set the status

bit
TO
. However, if the system is in the power-down mode, only a WDT time-out reset from
HALT

will be initialized which will only reset the Program Counter and SP. Three methods can be adopted

to clear the contents of the WDT. The first is an external hardware reset (a low level on the RES pin),

the second is via software instructions and the third is via a
HALT
 instruction. There are two meth-

ods of using software instructions to clear the Watchdog Timer, one of which must be chosen by con-

figuration option. The first option is to use the single
CLR WDT
 instruction while the second is to

use the two commands
CLR WDT1
 and
CLR WDT2
. For the first option, a simple execution of

CLR WDT
 will clear the WDT while for the second option, both
CLR WDT1
 and
CLR WDT2

must both be executed to successfully clear the WDT. Note that for this second option, if
CLR

WDT1
 is used to clear the WDT, successive executions of this instruction will have no effect, only

the execution of a
CLR WDT2
 instruction will clear the WDT. Similarly after the
CLR WDT2
 in-

struction has been executed, only a successive
CLR WDT1
 instruction can clear the Watchdog

Timer.

Note 1. The 4-to-1 configuration option to select fS/212, fS/213,fS/214or fS/215 is not applicable in the

HT46R47/HT46C47, which has a fixed fS/215 division ratio.

2. Because only the last stage of counter chain is cleared by instructions, the WDT time-out period

varies. As an example, the selected value of 216/fS may range from 216/fS to 215/fS.

Chapter 1 Hardware Structure

75

� � � ! � � "
� +
 � � �
� � � � �

� � � � � � � � � � � � � � � �

� � �
 � � �
% � � � �

� % � � � � � 6 � . � 	 �

� % � � � � � / � . � 	 �

6 � � � � / � � � �
 � � �
 � � � �

! � > � � 1

� � � � � � � � � �
 + �

: * , �
 � � � - � � � �

! �

� % � �

� � � � � � � � * � �

' / 6 9 � ! � @ � / 6 1 � ! � @ � / 6 2 � ! � � � � � / 6 4 � ! � (

� /5 * , �
 � � � � � � 	 � � �
! � � / :

! � � / 6 / @ � ! � � / 6 9 @ � ! � � / 6 1 � � � � ! � � / 6 2

� � � ! � � � � +
 � � �

Watchdog Timer

Configuration Options

The various microcontroller configuration options selected using the HT-IDE are stored in the op-

tion memory. All bits must be defined for proper system function, the details of which are shown in

the table. After the configuration options have been programmed into the microcontroller by the

user, it is important to note that they cannot be altered later by the application program. For the

mask version devices, these configuration options, once defined, are implemented into the

microcontroller during the manufacturing process and therefore cannot be reconfigured by the user.

No. Option

1 WDT clock source: WDT oscillator or fSYS/4 or disable

2 CLRWDT instructions: 1 or 2 instructions

3 PA0~PA7 wake-up: enable or disable (by bit)

4
PA, PB, PC, PD, PF pull-high enable or disable
(Number of ports is device dependent. Pull-high bit or port is also device dependent.)

5 PD0~PD3: PWM function selection. Number of PWM channels are device dependent.

6
PWM mode selection: (7+1) or (6+2) mode
(excluding HT46R47/HT46C47, which is fixed at (6+2) mode)

7 OSC type selection: RC or crystal

8
PA3 PFD function: enable or disable
PFD source selection: from timer 0 or timer 1 PFD output (for HT46R24/HT46C24 only)

9 WDT division ratio: 212, 213, 214 or 215 (excluding HT46R47/HT46C47)

10 PA6, PA7 I2C bus function: enable or disable (excluding HT46R47/HT46C47)

11 LVR function: enable or disable

A/D Type MCU

76

Application Circuits

Chapter 1 Hardware Structure

77

� � � 6

� � � /

� � �
� � � � � �

� 7 �

8 " 6 � .

6 8 8) �

& � �

& � �

& � �

8 " 8 6 � .

6 8) �

� � � � 3 � ! 4

� � � � � � � � � � � � � � �

� � 8 � � � �

J� 0 8 � � 3 8

� 0 9 � � 3 9

� � 8 J � � /

� � 9 � � . �

� � 1 � � � �

� � 2 � � 3 �

� � 4 J � � 5

8 " 6 � .

� � � � & � � � � � � � � � # � ! �

9 8) � N � � � � N 5 2 8) �

& � �

� � � �
! � > � � 1

� � � 6

� � � /

1 5 8 + .

� � � 6

� � � /
� 6

� 6

� /

� � � � � � � �) � �

� � & � � # � � & � � � � � � � � � # � ! �

. � � � � � � + � � � �
 � - 	 � � � � @
� � � � � �
 � � � � � � � 	
 � � � � � �
 � � �

78

A/D Type MCU

� � � 6

� � � /

� � �
� � � � � �

� 7 �

8 " 6 � .

6 8 8) �

& � �

& � �

8 " 6 � .

& � �

8 " 8 6 � .

6 8) �

� � � � � � � � � � � � � � �

� � 8 � � � �

J� 0 8 � � 3 8

� 0 5 � � 3 5

� � 8 J � � /

� � 9 � � . �

� � 1 � � � �

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� � 8 J � � 6

� � � � 3 � ! 4

& � �

� � � �
! � > � � 1

� � � 6

� � � /

1 5 8 + .

� � � 6

� � � /
� 6

� 6

� /

� � � � � � � �) � �

. � � � � � � + � � � �
 � - 	 � � � � @
� � � � � �
 � � � � � � � 	
 � � � � � �
 � � �

� � & � � # � � & � � � � � � � � � # � ! �

� � � � & � � � � � � � � � # � ! �

9 8) � N � � � � N 5 2 8) �

Chapter 1 Hardware Structure

79

� � � 6

� � � /

� � �
� � � � � �

� 7 �

8 " 6 � .

6 8 8) �

& � �

& � �

8 " 6 � .

& � �

8 " 8 6 � .

6 8) �

� � � � � � � � � � � � � � �

J� 0 8 � � 3 8

� 0 5 � � 3 5

� � 8 J � � /

� � 9 � � . �

� � 1 � � � �

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� � 8 J � � 1

� � 8 � � � � 8

� � 6 � � � � 6

& � �

� � � �
! � > � � 1

� � � 6

� � � /

1 5 8 + .

� � � 6

� � � /
� 6

� 6

� /

� � � � � � � �) � �

. � � � � � � + � � � �
 � - 	 � � � � @
� � � � � �
 � � � � � � � 	
 � � � � � �
 � � �

� � � � 3 � ! 4

� � � � & � � � � � � � � � # � ! �

9 8) � N � � � � N 5 2 8) �

� � & � � # � � & � � � � � � � � � # � ! �

80

A/D Type MCU

� � � 6

� � � /

� � �
� � � � � �

� 7 �

8 " 6 � .

6 8 8) �

& � �

& � �

8 " 6 � .

& � �

8 " 8 6 � .

6 8) �

� � � � � � � � � � � � � � �
J� 0 8 � � 3 8

� 0 5 � � 3 5

� � 8 J � � /

� � 9 � � . �

� � 1

� � 2 � � 3 �

� � 4 � � � �

� � 5 � � � %

� � 8 J � � 5

� � 1 J � � 5

� . 8 J � . 5� � � � 3 � ! 4

J� � 8 � � � � 8

� � 9 � � � � 9

& � �

� � � �
! � > � � 1

� � � 6

� � � /

1 5 8 + .

� � � 6

� � � /
� 6

� 6

� /

� � � � � � � �) � �

. � � � � � � + � � � �
 � - 	 � � � � @
� � � � � �
 � � � � � � � 	
 � � � � � �
 � � �

� � � 8

� � � 6

� � & � � # � � & � � � � � � � � � # � ! �

� � � � & � � � � � � � � � # � ! �

9 8) � N � � � � N 5 2 8) �

P a r t I I

Programming Language

Part II Programming Language

81

82

A/D Type MCU

C h a p t e r 2

Instruction Set Introduction

Instruction Set

Central to the successful operation of any microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to perform certain operations. In the case of

Holtek microcontrollers, a comprehensive and flexible set of over 60 instructions is provided to en-

able programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several

functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch,

call, or table read instructions where two instruction cycles are required. One instruction cycle is

equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instruc-

tions would be implemented within 0.5�s and branch or call instructions would be implemented

within 1�s. Although instructions which require one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other in-

structions which involve manipulation of the Program Counter Low register or PCL will also take

one more cycle to implement. As instructions which change the contents of the PCL will imply a di-

rect jump to that new address, one more cycle will be required. Examples of such instructions

would be
CLR PCL
 or
MOV PCL, A
. For the case of skip instructions, it must be noted that if

the result of the comparison involves a skip operation then this will also take one more cycle, if no

skip is involved then only one cycle is required.

Chapter 2 Instruction Set Introduction

83

2

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used opera-

tions. Making use of three kinds of MOV instructions, data can be transferred from registers to the

Accumulator and vice-versa as well as being able to move specific immediate data directly into the

Accumulator. One of the most important data transfer applications is to receive data from the input

ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature

of most microcontroller applications. Within the Holtek microcontroller instruction set are a range

of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out.

Care must be taken to ensure correct handling of Carry and borrow data when results exceed 255

for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA,

DEC and DECA provide a simple means of increasing or decreasing by a value of one of the val-

ues in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction

within the Holtek microcontroller instruction set. As with the case of most instructions involving

data manipulation, data must pass through the Accumulator which may involve additional pro-

gramming steps. In all logical data operations, the zero flag may be set if the result of the operation

is zero. Another form of logical data manipulation comes from the rotate instructions such as RR,

RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate

instructions exist depending on program requirements. Rotate instructions are useful for serial

port programming applications where data can be rotated from an internal register into the Carry

bit from where it can be examined and the necessary serial bit set high or low. Another application

where rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction

or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subrou-

tine call, the program must return to the instruction immediately when the subroutine has been car-

ried out. This is done by placing a return instruction RET in the subroutine which will cause the

program to jump back to the address right after the CALL instruction. In the case of a JMP instruc-

tion, the program simply jumps to the desired location. There is no requirement to jump back to the

original jumping off point as in the case of the CALL. One special and extremely useful set of

branch instructions are the conditional branches. Here a decision is first made regarding the condi-

tion of a certain data memory or individual bits. Depending upon the conditions, the program will

continue with the next instruction or skip over it and jump to the following instruction. These instruc-

tions are the key to decision making and branching within the program perhaps determined by the

condition of certain input switches or by the condition of internal data bits.

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all

Holtek microcontrollers. This feature is especially useful for output port bit programming where in-

84

A/D Type MCU

dividual bits or port pins can be directly set high or low using either the
SET [m].i
 or
CLR [m].i
 in-

structions respectively. The feature removes the need for programmers to first read the 8-bit

output port, manipulate the input data to ensure that other bits are not changed and then output

the port with the correct new data. This read-modify-write process is taken care of automatically

when these bit operation instructions are used.

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large

amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in in-

dividual memory. To overcome this problem, Holtek microcontrollers allow an area of Program

Memory to be setup as a table where data can be directly stored. A set of easy to use instructions

provides the means by which this fixed data can be referenced and retrieved from the Program

Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as

HALT
 instruction for Power-down operation and instructions to control the operation of the

Watchdog Timer for reliable program operations under extreme electric or electromagnetic envi-

ronment. For their relevant operations, refer to the functional related sections.

Instruction Set Summary

Convention

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Chapter 2 Instruction Set Introduction

85

Mnemonic Description Cycles Flag Affected

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note

None

None

86

A/D Type MCU

Mnemonic Description Cycles Flag Affected

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note

None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the
CLR WDT1
 and
CLR WDT2
 instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both
CLR WDT1
 and

CLR WDT2
 instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Chapter 2 Instruction Set Introduction

87

88

A/D Type MCU

C h a p t e r 3

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m] � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC � ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC � ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m] � ACC + [m]

Affected flag(s) OV, Z, AC, C

Chapter 3 Instruction Definition

89

3

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC
AND
 [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC � ACC
AND
 x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC
AND
 [m]

Affected flag(s) Z

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack � Program Counter + 1

Program Counter � addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m] � 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i � 0

Affected flag(s) None

90

A/D Type MCU

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m] � [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC � [m]

Affected flag(s) Z

Chapter 3 Instruction Definition

91

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m] � ACC + 00H or

[m] � ACC + 06H or

[m] � ACC + 60H or

[m] � ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m] � [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO � 0

PDF � 1

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m] � [m] + 1

Affected flag(s) Z

92

A/D Type MCU

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter � addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC � [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC � x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m] � ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC � ACC
OR
 [m]

Affected flag(s) Z

Chapter 3 Instruction Definition

93

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC
OR
 x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m] � ACC
OR
 [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the

restored address.

Operation Program Counter � Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter � Stack

ACC � x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the enable master (global) interrupt bit (bit 0; register INTC). If an in-

terrupt was pending when the RETI instruction is executed, the pending Interrupt routine

will be processed before returning to the main program.

Operation Program Counter � Stack

EMI � 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � [m].7

Affected flag(s) None

94

A/D Type MCU

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � [m].7

Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � C

C � [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � C

C � [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � [m].0

Affected flag(s) None

Chapter 3 Instruction Definition

95

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � C

C � [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � C

C � [m].0

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the

result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is pos-

itive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] � 1

Skip if [m] = 0

Affected flag(s) None

96

A/D Type MCU

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC � [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m] � FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i � 1

Affected flag(s) None

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC � [m] + 1

Skip if ACC = 0

Affected flag(s) None

Chapter 3 Instruction Definition

97

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC � ACC � x

Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0 � [m].7 ~ [m].4

ACC.7 ~ ACC.4 � [m].3 ~ [m].0

Affected flag(s) None

98

A/D Type MCU

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC � [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

Chapter 3 Instruction Definition

99

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC
XOR
 [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC
XOR
 [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC � ACC
XOR
 x

Affected flag(s) Z

100

A/D Type MCU

C h a p t e r 4

Assembly Language and

Cross Assembler

Assembly-Language programs are written as source files. They can be assembled into object files

by the Holtek Cross Assembler. Object files are combined by the Cross Linker to generate a task

file.

A source program is made up of statements and look up tables, giving directions to the Cross As-

sembler at assembly time or to the processor at run time. Statements are constituted by mnemon-

ics (operations), operands and comments.

Notational Conventions

The following list describes the notations used by this document.

Example of Convention Description of Convention

[optional items]

Syntax elements that are enclosed by a pair of brackets are

optional. For example, the syntax of the command line is as

follows:

HASM [options] filename [;]

In the above command line, options and semicolon; are both

optional, but filename is required, except for the following

case:

Brackets in the instruction operands. In this case,

the brackets refer to memory address.

{choice1 | choice2}

Braces and vertical bars stand for a choice between two or

more items. Braces enclose the choices whereas vertical

bars separate the choices. Only one item can be chosen.

Chapter 4 Assembly Language and Cross Assembler

101

4

Example of Convention Description of Convention

Repeating elements...

Three dots following an item signify that more items with the

same form may be entered. For example, the directive PUB-

LIC has the following form:

PUBLIC name1 [,name2 [,...]]

In the above form, the three dots following name2 indicate

that many names can be entered as long as each is pre-

ceded by a comma.

Statement Syntax

The construction of each statement is as follows:

[name] [operation] [operands] [;comment]

� All fields are optional.

� Each field (except the comment field) must be separated from other fields by at least one space

or one tab character.

� Fields are not case-sensitive, i.e., lower-case characters are changed to upper-case characters

before processing.

Name

Statements can be assigned labels to enable easy access by other statements. A name consists

of the following characters:

A~Z a~z 0~9 ? _ @

with the following restrictions:

� 0~9 cannot be the first character of a name

� ? cannot stand alone as a name

� Only the first 31 characters are recognized

Operation

The operation defines the statement action of which two types exist, directives and instructions. Di-

rectives give directions to the Cross Assembler, specifying the manner in which the Cross Assem-

bler is to generate the object code at assembly time. Instructions, on the other hand, give

directions to the processor. They are translated to object code at assembly time, the object code in

turn controls the behavior of the processor at run time.

Operand

Operands define the data used by directives and instructions. They can be made up of symbols,

constants, expressions and registers.

102

A/D Type MCU

Comment

Comments are the descriptions of codes. They are used for documentation only and are ignored

by the Cross Assembler. Any text following a semicolon is considered a comment.

Assembly Directives

Directives give direction to the Cross Assembler, specifying the manner in which the Cross Assem-

bler generates object code at assembly time. Directives can be further classified according to their

behavior as described below.

Conditional Assembly Directives

The conditional block has the following form:

IF

statements

[ELSE

statements]

ENDIF

 Syntax

IF expression

IFE expression

� Description

The directives IF and IFE test the expression following them.

The IF directive grants assembly if the value of the expression is true, i.e. non-zero.

The IFE directive grants assembly if the value of the expression is false, i.e. zero.

� Example
IF debugcase

ACC1 equ 5
extern username: byte

ENDIF

In this example, the value of the variable ACC1 is set to 5 and the username is declared as an

external variable if the symbol debugcase is evaluated as true, i.e. nonzero.

 Syntax

IFDEF name

IFNDEF name

� Description

The directives IFDEF and IFNDEF test whether or not the given name has been defined. The

IFDEF directive grants assembly only if the name is a label, a variable or a symbol. The IFNDEF di-

rective grants assembly only if the name has not yet been defined. The conditional assembly direc-

tives support a nesting structure, with a maximum nesting level of 7.

� Example
IFDEF buf_flag

buffer DB 20 dup(?)
ENDIF

In this example, the buffer is allocated only if the buf_flag has been previously defined.

Chapter 4 Assembly Language and Cross Assembler

103

File Control Directives

 Syntax

INCLUDE file-name

or

INCLUDE �file-name�

� Description

This directive inserts source codes from the source file given by file-name into the current

source file during assembly. Cross Assembler supports at most 7 nesting levels.

� Example
INCLUDE macro.def

In this example, the Cross Assembler inserts the source codes from the file macro.def into the

current source file.

 Syntax

PAGE size

� Description

This directive specifies the number of the lines in a page of the program listing file. The page

size must be within the range from 10 to 255, the default page size is 60.

� Example

PAGE 57

This example sets the maximum page size of the listing file to 57 lines.

 Syntax

.LIST

.NOLIST

� Description

The directives .LIST and .NOLIST decide whether or not the source program lines are to be

copied to the program listing file. .NOLIST suppresses copying of subsequent source lines to

the program listing file. .LIST restores the copying of subsequent source lines to the program

listing file. The default is .LIST.

� Example
.NOLIST
mov a, 1
mov b1, a
.LIST

In this example, the two instructions in the block enclosed by .NOLIST and .LIST are sup-

pressed from copying to the source listing file.

 Syntax

.LISTMACRO

.NOLISTMACRO

� Description

The directive .LISTMACRO causes the Cross Assembler to list all the source statements, in-

cluding comments, in a macro. The directive .NOLISTMACRO suppresses the listing of all macro

expansions. The default is .NOLISTMACRO.

104

A/D Type MCU

 Syntax

.LISTINCLUDE

.NOLISTINCLUDE

� Description

The directive .LISTINCLUDE inserts the contents of all included files into the program listing.

The directive .NOLISTINCLUDE suppresses the addition of included files. The default is

.NOLISTINCLUDE.

 Syntax

MESSAGE �text-string�

� Description

The directive MESSAGE directs the Cross Assembler to display the text-string on the

screen. The characters in the text-string must be enclosed by a pair of single quotation

marks.

 Syntax

ERRMESSAGE �error-string�

� Description

The directive ERRMESSAGE directs the Cross Assembler to issue an error. The characters in the

error-string must be enclosed by a pair of single quotation marks.

Program Directives

 Syntax (comment)

; text

� Description

A comment consists of characters preceded by a semicolon (;) and terminated by an embedded

carriage-return/line-feed.

 Syntax

name .SECTION [align] [combine] �class�

� Description

The .SECTION directive marks the beginning of a program section. A program section is a col-

lection of instructions and/or data whose addresses are relative to the section beginning with the

name which defines that section. The name of a section can be unique or be the same as the

name given to other sections in the program. Sections with the same complete names are

treated as the same section.

The optional align type defines the alignment of the given section. It can be one of the follow-

ing:

BYTE uses any byte address (the default align type)

WORD uses any word address

PARA uses a paragraph address

PAGE uses a page address

For the CODE section, the byte address is in a single instruction unit. BYTE aligns the section at

any instruction address, WORD aligns the section at any even instruction address, PARA aligns

the section at any instruction address which is a multiple of 16, and PAGE aligns the section at

any instruction address with a multiple of 256.

Chapter 4 Assembly Language and Cross Assembler

105

For DATA sections, the byte address is in one byte units (8 bits/byte). BYTE aligns the section at

any byte address, WORD aligns the section at any even address, PARA aligns the section at

any address which is a multiple of 16, and PAGE aligns the section at any address which is a

multiple of 256.

The optional combine type defines the way of combining sections having the same complete

name (section and class name). It can be any one of the following:

� COMMON

Creates overlapping sections by placing the start of all sections with the same complete name

at the same address. The length of the resulting area is the length of the longest section.

� AT address

Causes all label and variable addresses defined in a section to be relative to the given ad-

dress. The address can be any valid expression except a forward reference. It is an absolute

address in a specified ROM/RAM bank and must be within the ROM/RAM range.

If no combine type is given, the section is combinative, i.e., this section can be concatenated

with all sections having the same complete name to form a single, contiguous section.

The class type defines the sections that are to be loaded in the contiguous memory. Sections

with the same class name are loaded into the memory one after another. The class name CODE

is used for sections stored in ROM, and the class name DATA is used for sections stored in

RAM. The complete name of a section consists of a section name and a class name. The named

section includes all codes and data below (after) it until the next section is defined.

 Syntax

ROMBANK banknum section-name [,section-name,...]

� Description

This directive declares which sections are allocated to the specified ROM bank. The banknum

specifies the ROM bank, ranging from 0 to the maximum bank number of the destination MCU.

The section-name is the name of the section defined previously in the program. More than

one section can be declared in a bank as long as the total size of the sections does not exceed

the bank size of 8K words. If this directive is not declared, bank 0 is assumed and all CODE sec-

tions defined in this program will be in bank 0. If a CODE section is not declared in any ROM

bank, then bank 0 is assumed.

 Syntax

RAMBANK banknum section-name [,section-name,...]

� Description

This directive is similar to ROMBANK except that it specifies the RAM bank, the size of RAM bank

is 256 bytes.

 Syntax

END

� Description

This directive marks the end of a program. Adding this directive to any included file should be

avoided.

106

A/D Type MCU

 Syntax

ORG expression

� Description

This directive sets the location counter to expression. The subsequent code and data offsets

begin at the new offset specified by expression. The code or data offset is relative to the be-

ginning of the section where the directive ORG is defined. The attribute of a section determines

the actual value of offset, absolute or relative.

� Example
ORG 8
mov A, 1

In this example, the statement mov A, 1 begins at location 8 in the current section.

 Syntax

PUBLIC name1 [,name2 [,...]]
EXTERN name1:type [,name2:type [, ...]]

� Description

The PUBLIC directive marks the variable or label specified by a name that is available to other

modules in the program. The EXTERN directive, on the other hand, declares an external vari-

able, label or symbol of the specified name and type. The type can be one of the four types:

BYTE, WORD and BIT (these three types are for data variables), and NEAR (a label type and

used by call or jmp).

� Example
PUBLIC start, setflag
EXTERN tmpbuf:byte

CODE .SECTION �CODE�
start:

mov a, 55h
call setflag
....

setflag proc
mov tmpbuf, a
ret

setflag endp
end

In this example, both the label start and the procedure setflag are declared as public vari-

ables. Programs in other sources may refer to these variables. The variable tmpbuf is also de-

clared as external. There should be a source file defining a byte that is named tmpbuf and is

declared as a public variable.

Chapter 4 Assembly Language and Cross Assembler

107

 Syntax

name PROC

name ENDP

� Description

The PROC and ENDP directives mark a block of code which can be called or jumped to from other

modules. The PROC creates a label name which stands for the address of the first instruction of a

procedure. The Cross Assembler will set the value of the label to the current value of the location

counter.

� Example
toggle PROC
mov tmpbuf, a
mov a, 1
xorm a, flag
mov a, tmpbuf
ret
toggle ENDP

 Syntax

[label:] DC expression1 [,expression2 [,...]]

� Description

The DC directive stores the value of expression1, expression2 etc. in consecutive mem-

ory locations. This directive is used for the CODE section only. The bit size of the result value is

dependent on the ROM size of the MCU. The Cross Assembler will clear any redundant bits;

expression1 has to be a value or a label. This directive may also be employed to setup the ta-

ble in the code section.

� Example
table1: DC 0128h, 025CH

In this example, the Cross Assembler reserves two units of ROM space and also stores 0128H

and 025CH into these two ROM units.

Data Definition Directives

An assembly language program consists of one or more statements and comments. A statement or

comment is a composition of characters, numbers, and names. The assembly language supports inte-

ger numbers. An integer number is a collection of binary, octal, decimal, or hexadecimal digits along

with an optional radix. If no radix is given, the Cross Assembler uses the default radix (decimal). The ta-

ble lists the digits that can be used with each radix.

Radix Type Digits

B Binary 01

O Octal 01234567

D Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

108

A/D Type MCU

 Syntax

[name] DB value1 [,value2 [, ...]]
[name] DW value1 [,value2 [, ...]]
[name] DBIT

[name] DB repeated-count DUP(?)
[name] DW repeated-count DUP(?)

� Description

These directives reserve the number of bytes/words specified by the repeated-count or reserve

bytes/words only. value1 and value2 should be ? due to the microcontroller RAM . The Cross

Assembler will not initialize the RAM data. DBIT reserves a bit. The content ? denotes

uninitialized data, i.e., reserves the space of the data. The Cross Assembler will gather every 8

DBIT together and reserve a byte for these 8 DBIT variables.

� Example

DATA .SECTION �DATA�
tbuf DB ?
chksum DW ?
flag1 DBIT
sbuf DB ?
cflag DBIT

In this example, the Cross Assembler reserves byte location 0 for tbuf, location 1 and 2 for

chksum, bit 0 of location 3 for flag1, location 4 for sbuf and bit 1 of location 3 for cflag.

 Syntax

name LABEL {BIT|BYTE|WORD}

� Description

The name with the data type has the same address as the following data variable

� Example
lab1 LABEL WORD
d1 DB ?
d2 DB ?

In this example, d1 is the low byte of lab1 and d2 is the high byte of lab1.

 Syntax

name EQU expression

� Description

The EQU directive creates absolute symbols, aliases, or text symbols by assigning an expres-

sion to name. An absolute symbol is a name standing for a 16-bit value; an alias is a name rep-

resenting another symbol; a text symbol is a name for another combination of characters. The

namemust be unique, i.e. not having been defined previously. The expression can be an inte-

ger, a string constant, an instruction mnemonic, a constant expression, or an address expres-

sion.

� Example
accreg EQU 5
bmove EQU mov

In this example, the variable accreg is equal to 5, and bmove is equal to the instruction mov.

Chapter 4 Assembly Language and Cross Assembler

109

Macro Directives

Macro directives enable a block of source statements to be named, and then that name to be

re-used in the source file to represent the statements. During assembly, the Cross Assembler auto-

matically replaces each occurrence of the macro name with the statements in the macro definition.

A macro can be defined at any place in the source file as long as the definition precedes the first

source line that calls this macro. In the macro definition, the macro to be defined may refer to other

macros which have been previously defined. The Cross Assembler supports a maximum of 7 nest-

ing levels.

 Syntax

name MACRO [dummy-parameter [, ...]]
statements
ENDM

The Cross Assembler supports a directive LOCAL for the macro definition.

 Syntax

name LOCAL dummy-name [, ...]

� Description

The LOCAL directive defines symbols available only in the defined macro. It must be the first line

following the MACRO directive, if it is present. The dummy-name is a temporary name that is re-

placed by a unique name when the macro is expanded. The Cross Assembler creates a new ac-

tual name for dummy-name each time the macro is expanded. The actual name has the form

??digit, where digit is a hexadecimal number within the range from 0000 to FFFF. A label

should be added to the LOCAL directive when labels are used within the MACRO/ENDM block.

Otherwise, the Cross Assembler will issue an error if this MACRO is referred to more than once in

the source file.

In the following example, tmp1 and tmp2 are both dummy parameters, and are replaced by ac-

tual parameters when calling this macro. label1 and label2 are both declared LOCAL, and

are replaced by ??0000 and ??0001 respectively at the first reference, if no other MACRO is re-

ferred. If no LOCAL declaration takes place, label1 and label2will be referred to labels, simi-

lar to the declaration in the source program. At the second reference of this macro, a multiple

define error message is displayed.

Delay MACRO tmp1, tmp2
LOCAL label1, label2
mov a, 70h
mov tmp1, a

label1:
mov tmp2, a

label2:
clr wdt1
clr wdt2
sdz tmp2
jmp label2
sdz tmp1
jmp label1
ENDM

110

A/D Type MCU

The following source program refers to the macro Delay ...

The Cross Assembler will expand the macro Delay as shown in the following listing file. Note that

the offset of each line in the macro body, from line 4 to line 17, is 0000. Line 24 is expanded to 11

lines and forms the macro body. In addition the formal parameters, tmp1 and tmp2, are replaced

with the actual parameters, BCnt and SCnt, respectively.

Chapter 4 Assembly Language and Cross Assembler

111

� � � � � � �

� � � � � 	
 � � �

 � �
 � 	 � � �
 � � � � � � �

� � � � � � � �
 �

� � � � � � � � � � � � � � 	
 � � � � 	
 �

� �

� � � � � � 	 � � � � � � � � � ! "

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � � �
 � � � � $ % � �

� � � � � � � �
 � � � � $ % � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � () � �

% � � � � � � � � � � � * � + % � � � +

, � * � � % � � -

� � * � � % � � -

� � % � � � � � � � � � * � � � � ! � + � � % � +

� � � � � � , � * � � � � � * �

� * %

. � � � # � � � � � 	 � � � � � � � � � / � � � � 0 � �
 � � � 1 � � � � 	 � � �
 � � 2 �
 � � � * � � � 3 ! � � � � � � 4 � � � � �

� � � � � � ! ! ! ! �

� � � � � � ! ! ! ! � � � � � � � � � � � � � � � � � � � 	
 � � �

 � �
 � 	 � � �
 � � � � � � �

� � � 5 � � ! ! ! ! �
 �

� � � 6 � � ! ! ! ! � 	
 � � � � 	
 �

� � � 7 � � ! ! ! ! �

� � � 8 � � ! ! ! ! � 	 � � � � � � � � � ! "

� � � � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � 3 � � ! ! ! ! � #

� � � 9 � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � ! � � ! ! ! ! � #

� � � � � � ! ! ! ! �
 � � � � $ % � �

� � � � � � ! ! ! ! �
 � � � � $ % � �

� � � 5 � � ! ! ! ! � % & � � � � � 	
 �

� � � 6 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � 7 � � ! ! ! ! � % & � � � � � 	
 �

� � � 8 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � � � ! ! ! ! � () � �

� � � 3 � � ! ! ! !

� � � 9 � � ! ! ! ! � � � � � � � � � � � � � � % � � � � � � � � � � � * � + % � � � +

� � � ! � � ! ! ! ! � � ! ! � � � � � � � � � � , � * � � % � � -

� � � � � � ! ! ! � � � ! ! � � � � � � � � � � � � * � � % � � -

� � � � � � ! ! ! �

� � � 5 � � ! ! ! ! � � � � � � � � � � � � � � � � % � � � � � � � � � * � � � � ! � + � � % � +

� � � 6 � � ! ! ! ! � , � * � � � � � * �

� � � 6 � � ! ! ! ! � � ! . ! � � � � � � � � � � � � � � 	 � � � � � � � � � ! "

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � , � * � � � �

� � � 6 � � ! ! ! � � � � � � � � � � � � � � � � - - ! ! ! ! #

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � � � * � � � �

� � � 6 � � ! ! ! 5 � � � � � � � � � � � � � � � - - ! ! ! � #

� � � 6 � � ! ! ! 5 � � ! ! ! � � � � � � � � � � � � � � � � �
 � � � � $ % � �

� � � 6 � � ! ! ! 6 � � ! ! ! 7 � � � � � � � � � � � � � � � �
 � � � � $ % � �

� � � 6 � � ! ! ! 7 � � � 3 ! � � � � � � � � � � � � � � � % & � � � � � � * �

� � � 6 � � ! ! ! 8 � � � 3 ! 5 � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! �

� � � 6 � � ! ! ! � � � 3 ! � � � � � � � � � � � � � � � % & � � � � , � * �

� � � 6 � � ! ! ! 3 � � � 3 ! � � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! !

� � � 7 � � ! ! ! 9 � � � � � � � � � � � � � � � * %

� � � � � � � � ! � (

 �
 �

Assembly Instructions

The syntax of an instruction has the following form:

[name:] mnemonic [operand1[,operand2]] [;comment]

where

name:
 label name

mnemonic
 instruction name (keywords)

operand1
 registers

memory address

operand2
 registers

memory address

immediate value

Name

A name is made up of letters, digits, and special characters, and is used as a label.

Mnemonic

Mnemonic is an instruction name dependent upon the type of the MCU used in the source pro-

gram.

Operand, Operator and Expression

Operands (source or destination) are the argument defining values that are to be acted on by in-

structions. They can be constants, variables, registers, expressions or keywords. When using the

instruction statements, care must be taken to select the correct operand type, i.e. source operand

or destination operand. The dollar sign $ is a special operand, namely the current location oper-

and.

An expression consists of many operands that are combined to describe a value or a memory loca-

tion. The combined operators are evaluated at assembly time. They can contain constants, sym-

bols, or any combination of constants and symbols that are separated by arithmetic operators.

Operators specify the operations to be performed while combining the operands of an expression.

The Cross Assembler provides many operators to combine and evaluate operands. Some opera-

tors work with integer constants, some with memory values, and some with both. Operators han-

dle the calculation of constant values that are known at the assembly time. The following are some

operators provided by the Cross Assembler.

� Arithmetic operators + - * / % (MOD)

� SHL and SHR operators

� Syntax
expression SHR count
expression SHL count

112

A/D Type MCU

The values of these shift bit operators are all constant values. The expression is shifted right

SHR or left SHL by the number of bits specified by count. If bits are shifted out of position, the

corresponding bits that are shifted in are zero-filled. The following are such examples:

mov A, 01110111b SHR 3 ; result ACC=00001110b

mov A, 01110111b SHL 4 ; result ACC=01110000b

� Bitwise operators NOT, AND, OR, XOR

� Syntax
NOT expression
expression1 AND expression2
expression1 OR expression2
expression1 XOR expression2

NOT is a bitwise complement.

AND is a bitwise AND.

OR is a bitwise inclusive OR.

XOR is a bitwise exclusive OR.

� OFFSET operator

� Syntax
OFFSET expression

The OFFSET operator returns the offset address of an expression. The expression can be

a label, a variable, or other direct memory operand. The value returned by the OFFSET operator

is an immediate operand.

� LOW, MID and HIGH operator

� Syntax
LOW expression
MID expression
HIGH expression

The LOW/MID/HIGH operator returns the value of an expression if the result of the expres-

sion is an immediate value. The LOW/MID/HIGH operators will then take the low/middle/high

byte of this value. But if the expression is a label, the LOW/MID/HIGH operator will take the

values of the low/middle/high byte of the program count of this label.

� BANK operator

� Syntax
BANK name

The BANK operator returns the bank number allocated to the section of the name declared. If the

name is a label then it returns the rom bank number. If the name is a data variable then it returns

the ram bank number. The format of the bank number is the same as the BP defined. For more

information of the format please refer to the data sheets of the corresponding MCUs. (Note: The

format of the BP might be different between MCUs.)

Example 1:

mov A, BANK start
mov BP,A
jmp start

Chapter 4 Assembly Language and Cross Assembler

113

Example 2:

mov A, BANK var
mov BP,A
mov A, OFFSET var
mov MP1,A
mov A,IAR1

� Operator precedence

Precedence Operators

1 (Highest)

2

3

4

5

6

7

8

9 (Lowest)

(), []

+, � (unary), LOW, MID, HIGH, OFFSET, BANK

*, /, %, SHL, SHR

+, � (binary)

> (greater than), >= (greater than or equal to),

< (less than), <= (less than or equal to)

== (equal to), != (not equal to)

! (bitwise NOT)

& (bitwise AND)

|(bitwise OR), ^(bitwise XOR)

Miscellaneous

Forward References

The Cross Assembler allows reference to labels, variable names, and other symbols before they

are declared in the source code (forward named references). But symbols to the right of EQU are

not allowed to be forward referenced.

Local Labels

A local label is a label with a fixed form such as $number. The number can be 0~29. The function of

a local label is the same as a label except that the local label can be used repeatedly. The local la-

bel should be used between any two consecutive labels and the same local label name may used

between other two consecutive labels. The Cross Assembler will transfer every local label into a

unique label before assembling the source file. At most 30 local labels can be defined between two

consecutive labels.

Example.

Label1: ; label
$1: ;; local label

mov a, 1
jmp $3

$2: ;; local label
mov a, 2
jmp $1

$3: ;; local label
jmp $2

Label2: ; label
jmp $1

$0: ;; local label
jmp Label1

$1: jmp $0
Label3:

114

A/D Type MCU

Reserved Assembly Language Words

The following tables list all reserved words used by the assembly language.

� Reserved Names (directives, operators)

$ DUP INCLUDE NOT

* DW LABEL OFFSET

+ ELSE .LIST OR

� END .LISTINCLUDE ORG

. ENDIF .LISTMACRO PAGE

/ ENDM LOCAL PARA

= ENDP LOW PROC

? EQU MACRO PUBLIC

[] ERRMESSAGE MESSAGE RAMBANK

AND EXTERN MID ROMBANK

BANK HIGH MOD .SECTION

BYTE IF NEAR SHL

DB IFDEF .NOLIST SHR

DBIT IFE .NOLISTINCLUDE WORD

DC IFNDEF .NOLISTMACRO XOR

� Reserved Names (instruction mnemonics)

ADC HALT RLCA SUB

ADCM INC RR SUBM

ADD INCA RRA SWAP

ADDM JMP RRC SWAPA

AND MOV RRCA SZ

ANDM NOP SBC SZA

CALL OR SBCM TABRDC

CLR ORM SDZ TABRDL

CPL RET SDZA XOR

CPLA RETI SET XORM

DAA RL SIZ

DEC RLA SIZA

DECA RLC SNZ

� Reserved Names (registers names)

A WDT WDT1 WDT2

Chapter 4 Assembly Language and Cross Assembler

115

Cross Assembler Options

The Cross Assembler options can be set via the Options menu Project command in HT-IDE3000.

The Cross Assembler Options is located on the center part of the Project Option dialog box.

The symbols could be defined in the Define Symbol edit box.

 Syntax

symbol1[=value1] [, symbol2[=value2] [, ...]]

� Example,
debugflag=1, newver=3

The check box of the Generate listing file is used to decide whether the listing file should be gener-

ated or not. If the check box is checked, the listing file will be generated. Otherwise, it won�t be gen-

erated.

Assembly Listing File Format

The Assembly Listing File contains the source program listing and summary information. The first

line of each page is a title line which include company name, the Cross Assembler version num-

ber, source file name, date/time of assembly and page number.

Source Program Listing

Each line in the source program has the following syntax:

line-number offset [code] statement

� Line-number is the number of the line starting from the first statement in the assembly source

file (4 decimal digits).

� The 2nd field � offset � is the offset from the beginning of the current section to the code (4

hexadecimal digits)

� The 3rd field � code � is present only if the statement generates code or data (two hexadecimal

4-digit data)

The code shows the numeric value in hexadecimal if the value is known at assembly time. Oth-

erwise, a proper flag will indicate the action required to compute the value. The following two

flags may appear behind the code field.

R
 relocatable address (Cross Linker must resolve)

E
 external symbol (Cross Linker must resolve)

The following flag may appear before the code field

=
 EQU or equal-sign directive

The following 2 flags may appear in the code field

 section address (Cross Linker must resolve)

nn[xx]
 DUP expression: nn DUP(?)

� The 4th field � statement � is the source statement shown exactly as it appears in the source

file, or as expanded by a macro. The following flags may appear before a statement.

n
 Macro-expansion nesting level

C
 line from INCLUDE file

116

A/D Type MCU

� Summary

l l l l
 line number (4 digits, right alignment)

oooo
 offset of code (4 digits)

hhhh
 two 4-digits for opcode

E
 external reference

C
 statement from included file

R
 relocatable name

n
 Macro-expansion nesting level

Summary of Assembly

The total warning number and total error number is the information provided at the end of the

Cross Assembler listing file.

Miscellaneous

If any errors occur during assembly, each error message and error number will appear directly be-

low the statement where the error occurred.

Chapter 4 Assembly Language and Cross Assembler

117

6 / 9 1 2 4 5 : ; 8 6 / 9 1 2 4 5 : ; 8 6 / 9 1 2 4 5 : ; 8 6 / 9 1 2 4 5 : ; 8 6 / 9 1 2 4 5 : ; 8 6 / 9 1 2 4 5 : ; 8
8 6 / 9 1 2 4

" " "
� � � � � � � � � � � � � � � � � � # # # # � � # # # # ' � � � � � � � * + � � � � 	 � * �
 	
 � � � �

� $
� � � �

 Example of assembly listing file

118

A/D Type MCU

. � � � # � � � � 4 � (� � � � � � � � / � � � � 0 � �
 � � � 1 � � � � 	 � � �
 � � 2 �
 � � � * � � � 3 8 � � � � � � 4 � � � � �

�

�

5

6

7

8

�

�

5

6

7

8

3

9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

5 !

5 �

5 �

5 5

5 5

5 5

5 5

5 5

5 6

5 7

5 8

5

5 3

5 9

6 !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! 6

! ! ! 7

! ! ! 7

! ! ! 8

! ! !

! ! !

! ! ! 3

! ! ! 9

! ! ! �

! ! ! ,

! ! ! �

! ! ! �

! ! � !

� � !

�

�

�

�

�

�

�

! !

! !

! !

! . 7 7

! ! 3 !

! ! 3 !

! . � �

! ! 9 5

! . ! !

! ! 9 �

� . � 6

! ! !

! . ! !

! . ! !

� 3 ! !

� � 5 6

� , � �

(

 �
 �

 � � � � 8 !

� � � � � � * � � : % �
� � � � � 	 � �
 �

 �

 � �

 �

 � �

 �

 � �

� ; :

� ; :

� ; :

� ; :

� ; :

� ; :

< � � " =

< � 5 " =

< � 6 " =

< � 7 " =

< � 8 " =

< � " =

> � * � � : % � ? � � 	
 � � � � * � ?

� @ � �
 *

� @ � �
 *

� �

 �

� �
 �
 �

� * % 	

	 � �
 �

� @ � � � �

� @ � � �

* � �

� � � �

� �

 �

	 � � � � �

	 � � �
 � �

� �

 �

� * % 	

% � � �

� �

� �

� � � �

� � % �

	 � �

	 � �

	 � �

	 � �

	 � �

� �

 �

	 � � � �

	 � �

� �

 �

� �

	 � �

	 � �

	 � �

' 	

7 8 3

(. � �

�

(

(

(

�

(

�

�

�

�

� � � � � � � * � + % � � � +

� % � � -

� % � � -

� % � � �

� � � � � � � * � + � � % � +

� � � ! 7 7 "

� � � � �

� @ � � � � � �

� � � ! � � "

 � � � � �

� � ! ! "

� � � � �

� � � � � * 0 � � @ � � � �

� � � � � � � � � � � @ � � �

� @ � � � �

� � 5 6 " � � 7 8 3 " � � ! � � � % " � � ! � � � � "

	 � � � � � � + � � 	
 � � � 4
 � �
 � 	 � � +

#

#

	 � �
 �

! ! "
�

< � � " = � � �

< � 6 " =

� * %

% $

P a r t I I I

Development Tools

Part III Development Tools

119

120

A/D Type MCU

C h a p t e r 5

MCU Programming Tools

To ease the process of application development, the importance and availability of supporting

tools for microcontrollers cannot be underestimated. To support its range of MCUs, Holtek is fully

committed to the development and release of easy to use and fully functional tools for its full range

of devices. The overall development environment is known as the HT-IDE, while the operating soft-

ware is known as the HT-IDE3000. The software provides an extremely user friendly Windows

based approach for program editing and debugging while the HT-ICE emulator hardware provides

full real time emulation with multi functional trace, stepping and breakpoint functions. With a com-

plete set of interface cards for its full device range and regular software Service Pack updates, the

HT-IDE development environment ensures that designers have the best tools to maximize effi-

ciency in the design and release of their microcontroller applications.

HT-IDE Development Environment

The Holtek Integrated Development Environment, otherwise known as the HT-IDE, is a high per-

formance integrated development environment designed around Holtek�s series of 8-bit MCU de-

vices. Incorporated within the system is the hardware and software tools necessary for rapid and

easy development of applications based on the Holtek range of 8-bit MCUs. The key component

within the HT-IDE system is the HT-ICE In-Circuit Emulator, capable of emulating the Holtek 8-bit

MCU in real time, in addition to providing powerful debugging and trace features. The latest ver-

sion of the HT-ICE In-Circuit Emulator also incorporates a complete OTP writer which provides the

user with all the tools required to design, debug and program their OTP devices.

As for the software, the HT-IDE3000 provides a friendly workbench to ease the process of applica-

tion program development, by integrating all of the software tools, such as editor, Cross Assem-

bler, Cross Linker, library and symbolic debugger into a user friendly Windows based

environment. In addition, the HT-IDE3000 provides a software simulator which is capable of simu-

lating the behavior of Holtek�s 8-bit MCU range without connection to the HT-ICE. All fundamental

functions of the HT-ICE hardware are valid for the simulator.

More detailed information on the HT-IDE3000 development system is contained within the

HT-IDE3000 User�s Guide. Installed in conjunction with the HT-IDE3000 and to ensure that the de-

velopment system contains information on new microcontrollers and the latest software updates,

Holtek provides regular HT-IDE3000 Service Packs. These Service Packs, which can be down-

loaded from the Holtek website, do not replace the HT-IDE3000 but are installed after the

HT-IDE3000 system software has been installed.

Chapter 5 MCU Programming Tools

121

5

Some of the special features provided by the HT-IDE3000 include:

 Emulation

� Real-time program instruction emulation

 Hardware

� Easy installation and usage

� Either internal or external oscillator

� Breakpoint mechanism

� Trace functions and trigger qualification supported by trace emulation chip

� Printer port for connecting the HT-ICE to a host computer

� I/O interface card for connecting the user�s application board to the HT-ICE

� OTP writer hardware integrated within the HT-ICE

 Software

� Windows based software utilities

� Source program level debugger (symbolic debugger)

� Workbench for multiple source program files (more than one source program file in one

application project)

� All tools are included for the development, debug, evaluation and generation of the final

application program code (mask ROM file)

� Library for the setting up of common procedures which can be linked at a later date to other

projects.

� Simulator can simulate and debug programs without connection to the HT-ICE hardware

� Virtual Peripheral Manager (VPM) simulates the behavior of the peripheral devices.

� LCD simulator simulates the behavior of the LCD panel.

Holtek In-Circuit Emulator � HT-ICE

Developed alongside the Holtek 8-bit microcontroller device range, the Holtek ICE is a fully func-

tional in-circuit emulator for Holtek�s 8-bit microcontroller devices. Incorporated within the system

are a comprehensive set of hardware and software tools for rapid and easy development of user

applications. Central to the system is the in-circuit hardware emulator, capable of emulating all of

Holtek�s 8-bit devices in real-time, while also providing a range of powerful debugging and trace fa-

cilities. Regarding software functions, the system incorporates a user-friendly Windows based

workbench which integrates together functions such as program editor, Cross Assembler, Cross

Linker and library manager. In addition, the system is capable of running in software simulation

mode without connection to the HT-ICE hardware.

HT-ICE Interface Card

The interface cards supplied with the HT-ICE can be used for most applications, however, it is pos-

sible for the user to omit the supplied interface card and design their own interface card. By includ-

ing the necessary interface circuitry on their own interface card, the user has a means of directly

connecting their target boards to the CN1 and CN2 connectors of the HT-ICE.

122

A/D Type MCU

OTP Programmer

Holtek�s OTP devices are fully supported by a range of programmers. For engineering level OTP

device programming, Holtek supplies its stand alone programming tool which provides a quick

and efficient means for low volume OTP programming. The HT-ICE In-Circuit Emulators has

integrated a writer as part of the hardware package, facilitating complete design, debug and OTP

device programming all within the HT-ICE. More programmers from other suppliers are available

which provide more efficient and higher volume production capability. Refer to our website for fur-

ther suppliers information.

OTP Adapter Card

The Holtek OTP programmers are supplied with a standard Textool chip socket. The OTP Adapter

Card is used to connect the Holtek OTP programmers to the various sizes of available OTP chip

packages that are unable to use this supplied socket.

System Configuration

The HT-IDE system configuration is shown below, in which the host computer is a Pentium compat-

ible machine with Windows 95/98/NT/2000/XP or later. Note that if Windows NT/2000/XP or later

systems are used, then the HT-IDE3000 software must be installed in the Supervisor Privilege

mode.

The HT-IDE system contains the following hardware components:

� The HT-ICE box contains the emulator box with 1 printer port connector for connecting to the

host machine, I/O signal connector and one power-on LED

� I/O interface card for connecting the target board to the HT-ICE box

� Power Adapter, output 16V

� 25-pin D-type printer cable

� Integrated OTP writer

Chapter 5 MCU Programming Tools

123

� � � �
 � � � � 	 , � �

� � � � � � �
 � �

� � F � � � � � 	 +
 � �

7 � � � 	
 � � � 0 � <
B � * � � 7

� 	 � � �

0 � 	 � �

7 � � � 	
 � �
. � 	
 � � 	 , � �

� �
 � � ! 	 � �
� 	 � �

=

� � �
 � ' � 5 � ! $ � � 6 � � 4

� � �
 � ' � � � # � � 6 � � 4

� 3 6� 3 /

� � � �
 � � � � � �
 � � � �
 � � � 6 4 &

HT-ICE Interface Card Settings

The HT-ICE interface card (CPCB46SER0001A) as shown below, is a PCB used to connect the

HT-ICE emulator to user�s target board. It has the following functions:

� External clock source

� A/D converter HTUY0001 in location U5

� MCU socket pin assignment

The external clock source has two modes, RC and Crystal. If a crystal clock is used, short posi-

tions 2 and 3 on Jumper JP1 and insert a suitable crystal into location Y1. Otherwise, if an RC

clock is used, short positions 1 and 2, then adjust the system frequency using VR1. Refer to the

Tools/Mask Option Menu of the HT-IDE3000 User�s Guide for the clock source and system fre-

quency selection.

Set the jumper JP2 to select the MCU�s A/D converter AVDD power supply source. Short positions

1 and 2 on JP2 if the HT-ICE 5V supply voltage is to be used as the source. For other externally

supplied AVDD voltages, short positions 2 and 3, then provide the voltage from JP3 and JP4.

DIP switch SW1 should be set according to which device is selected and in accordance with the fol-

lowing table:

Part No.
SW1

1 2 3 4

HT46R22 � � � �

HT46R23 � � � �

HT46R24 OFF OFF OFF OFF

HT46R47 � � � �

JP6 consists of the I/O ports and other pins. The MCU pin assignment in location U2, U3 and U4

are defined so as to match the datasheet pin assignment for the A/D series of MCUs. The interface

card VME connectors directly interface to the CN1 and CN2 connectors on the HT-ICE.

124

A/D Type MCU

O � 2

& � /

O � 4

O � 6

O � 9

O � 1

O � / 6 /

 9

 1� � 6

 2
& � 6

> 6

Installation

System Requirement

The hardware and software requirements for installing HT-IDE3000 system are as follows:

� PC/AT compatible machine with Pentium or higher CPU

� SVGA color monitor

� At least 32M RAM for best performance

� CD ROM drive (for CD installation)

� At least 20M free disk space

� Parallel port to connect PC and HT-ICE

� Windows 95/98/NT/2000/XP

Windows 95/98/NT/2000/XP are trademarks of Microsoft Corporation.

Hardware Installation

� Step 1

Plug the power adapter into the power connector of the HT-ICE

� Step 2

Connect the target board to the HT-ICE by using the I/O interface card or flat cable

� Step 3

Connect the HT-ICE to the host machine using the printer cable

The LED on the HT-ICE should now be lighted, if not, there is an error and your dealer should be

contacted.

Caution Exercise care when using the power adapter. Do not use a power adapter whose output voltage is

not 16V, otherwise the HT-ICE may be damaged. It is strongly recommended that only the power

adapter supplied by Holtek be used. First plug the power adapter to the power connector of the

HT-ICE.

Software Installation

� Step1

Insert the HT-IDE3000 CD into the CD ROM drive, the following dialog will be shown.

Chapter 5 MCU Programming Tools

125

Click <HT-IDE3000> button and the following dialog will be shown.

Click <HT-IDE3000> or <Service Pack> as you want.

Here�s an Example of installing HT-IDE3000

Click <HT-IDE3000> button.

� Step 2

Press the <Next> button to continue setup or press <Cancel> button to abort.

126

A/D Type MCU

� Step 3

The following dialog will be shown to ask the user to enter a directory name.

Chapter 5 MCU Programming Tools

127

� Step 4

Specify the path you want to install the HT-IDE3000 and click <Next> button.

� Step 5

Setup will copy all files to the specified directory.

128

A/D Type MCU

� Step 6

If the process is successful a dialog will be shown.

� Step 7

Press the Finish button and restart the computer system. Then you can run HT-IDE3000 now.

SETUP will create four subdirectories, BIN, INCLUDE, LIB, SAMPLE, under the destination di-

rectory you specified in Step 4. The BIN subdirectory contains all the system executables

(EXE), dynamic link libraries (DLL) and configuration files (CFG, FMT) for all supported MCU.

The INCLUDE subdirectory contains all the include files (.H, .INC) provided by Holtek. The LIB

subdirectory contains the library files (.LIB) provided by Holtek. The SAMPLE subdirectory con-

tains some sample programs.

Note that before running the HT-IDE3000 for the first time, the system will ask for company infor-

mation as shown in the figure below. Select appropriate area and fill in the company name and

ID. The HT-IDE3000 provider can be requested to supply an ID number.

Chapter 5 MCU Programming Tools

129

130

A/D Type MCU

C h a p t e r 6

Quick Start

This chapter gives a brief description of using HT-IDE3000 to develop an application project.

Step 1 � Create a New Project

� Click on Project menu and select New command

� Enter your project name and select an MCU from the combo box

� Click OK button and the system will ask you to setup the mask options

� Setup all mask options and click Save button

Step 2 � Add Source Program Files to the Project

� Create your source files by using File/New command

� Write your program and save them with a file name, say TEST.ASM

� Click on Project menu and select Edit command

� An Edit Project dialog will ask you to add/delete files to/from the project

� Select a source file name, say TEST.ASM, and click Add button

� Click OK button after you setup all files in the project

Step 3 � Build the Project

� Click on Project menu and select Build command

� The system will assemble/compile all source files in the project

� If there are some errors in the programs, double click on the error message line and the sys-

tem will prompt you the position where the error happened.

� If all the program files are error free, the system will create a Task file and download to the

HT-ICE for debug.

� You may repeat this step before you finish debugging your programs

Step 4 � Programming the OTP Device

� Build the project for creating the .OTP file

� Click on Tools menu and select the HandyWriter command to program the OTP devices

Chapter 6 Quick Start

131

6

Step 5 � Transmit Code to Holtek

� Click on Project menu and select Print Option Table command

� Send the .COD file and the Option Approval Sheet to Holtek

The Programming and data flow is illustrated by the following diagram:

132

A/D Type MCU

7
 2 � 7 � � *

7 � 7 �

� � � P � �
 � �
� � � � � , � � � � � � + � � �

7 5 * �

7 8 � �

� � � P � �
 � �
0 � � � � �
� � , � � � � � � � �
6 " � � � � � � , � � � � � � + � � �
/ " � % � �) � �
9 " � % � 	 � � �
1 " � � � � � � � � � � � 	
 � �

7 � 3 9

� � � � � � �
% � , � 	 �
 � � 	 � 	 � � �

7 8
 3

% � �) � �
� � � 	
 � � � 	 �) � . � � �

7 * � �

7 � 3 :

� � , � � � �
� �
� � �
 � � � � � � � �
O � � + �
 � � � � � � � �
�
 � + � � � 	 � � � �
 � +
� � � �

� � F � � * � � � � � � �

� � � �
 � � � 	 � �
�
 � + � � �
 � � � - � � � � �

�
 � + + � � �

% � 	 � � �
� � F � � � 	 � �
 � � � � 7

� � � � � � � � � � 	
 � �

7 � � �

7 � � �
� � � � � � �

� 	 �) � � +
 � � �

7 � 5 :

7 � � �7 � � �
� � � � � � �

� � � �
 � � +
 � � � � � 	 , � �
� � � � � � �

B 	 � �
 � � �
 � �

� +
 � � �
� + + � � - 	 � � � # � �

� � �

 � �

* # � ;

 � �� ! � � ;

Appendix

Appendix

133

134

A/D Type MCU

A p p e n d i x A

Device Characteristic Graphics

The following characteristic graphics depicts typical device behavior. The data presented here is a

statistical summary of data gathered on units from different lots over a period of time. This is for in-

formation only and the figures were not tested during manufacturing.

In some of the graphs, the data exceeding the specified operating range are shown for information

purposes only. The device will operate properly only within the specified range.

Appendix A Device Characteristic Graphics

135

A

Typical RC OSC vs. Temperature

Typical RC Oscillator Frequency vs. VDD

136

A/D Type MCU

!�
>
�
�'
�
B
E
(

& � � � ' & � �
 � (

� K 2 4) �

� K 5 2) �
� K : /) �
� K 6 8 8) �

� K 6 2 8) �

� K 9 8 8) �

� K 5 2 8) �

/ " 1 / " 4 / " : 9 9 " / 9 " 1 9 " 4 9 " : 1 1 " / 1 " 1 1 " 4 1 " : 2 2 " / 2 " 1 2 " 4 2 " : 4/ " /

� K 1 9) �

6 /

6 8

:

4

1

/

8

& � � K 2 &

� � ' � � (

!�
�
�

!�
�
�
�'
/
2
� �

(

8 " ; /

8 " ; 1

8 " ; 4

8 " ; :

6

6 " 8 /

6 " 8 1

6 " 8 4

6 " 8 :

* 4 8 * 1 8 * / 8 8 / 8 1 8 4 8 : 8 6 8 8

& � � K 9 &

& � � K 2 &

& � � K 9 &

IOH vs. VOH, VDD=3V

IOH vs. VOH, VDD=5V

Appendix A Device Characteristic Graphics

137

��
B
�'
�
�
(

& � B � ' & � �
 � (

: 2 � �

/ 2 � �

8 � �

* 1 8 � �

8

* 6 8

* / 8

* 9 8

* 1 8

* 2 8

* 4 8

* 5 8

* : 8

* ; 8

/ " 2 9 9 " 2 1 1 " 2 2

��
B
�'
�
�
(

8

* 2

* 6 8

* 6 2

* / 8

* / 2

* 9 8

* 9 2

* 1 8

6 " 2 6 " : / " 6 / " 1 / " 5 9

: 2 � �

/ 2 � �

8 � �

* 1 8 � �

& � B � ' & � �
 � (

IOL vs. VOL, VDD=3V

IOL vs. VOL, VDD=5V

138

A/D Type MCU

��
%
�'
�
�
(

& � % � ' & � �
 � (

: 2 � �

/ 2 � �

* 1 8 � �

8 � �

5 8

4 8

2 8

1 8

9 8

/ 8

6 8

8

: 8

8 8 " 9 8 " 4 8 " ; 6 " / 6 " 2

��
%
�'
�
�
(

& � % � ' & � �
 � (

6 1 8

6 / 8

6 8 8

: 8

4 8

1 8

/ 8

8

8 8 " 2 6 6 " 2 / / " 2

: 2 � �

/ 2 � �

* 1 8 � �

8 � �

Typical RPH vs. VDD

Typical VIH, VIL vs. VDD in -40�C to +85�C

Appendix A Device Characteristic Graphics

139

: 2 � �
/ 2 � �
8 � �
* 1 8 � �

6 / 8

6 6 8

6 8 8

; 8

: 8

5 8

4 8

2 8

1 8

9 8

/ 8

6 8

8
/ " 1 / " 4 / " : 9 9 " / 9 " 1 9 " 4 9 " : 1 1 " / 1 " 1 1 " 4 1 " : 2 2 " / 2 " 1 2 " 4 2 " : 4/ " /

�
�
B
�'
)
�
(

& � � � ' & � �
 � (

/

/ " 1 / " 4 / " : 9 9 " / 9 " 1 9 " 4 9 " : 1 1 " / 1 " 1 1 " 4 1 " : 2 2 " / 2 " 1 2 " 4 2 " : 4/ " //

1

9 " 2

9

/ " 2

/

6 " 2

6

8 " 2

8

&
�B
@�
&
�%
�'
&
�
�

�
(

& � � � ' & � �
 � (

& � B � ' � 	 < " (

& � B � ' � � � " (

& � % � ' � 	 < " (

& � % � ' � � � " (

Typical ISTB vs. VDD Watchdog Enable

Typical tWDTOSC vs. VDD

140

A/D Type MCU

: 2 � �

/ 2 � �
8 � �

* 1 8 � �

;

:

5

4

2

1

9

/

6

8
/ " 1 / " 4 / " : 9 9 " / 9 " 1 9 " 4 9 " : 1 1 " / 1 " 1 1 " 4 1 " : 2 2 " / 2 " 1 2 " 4 2 " : 4/ " //

� �
�
0
�'
�
�
(

& � � � ' & � �
 � (

/ " 1 / " 4 / " : 9 9 " / 9 " 1 9 " 4 9 " : 1 1 " / 1 " 1 1 " 4 1 " : 2 2 " / 2 " 1 2 " 4 2 " : 4/ " //

: 2 � �

/ 2 � �

8 � �

* 1 8 � �

6 4 8

6 2 8

6 1 8

6 9 8

6 / 8

6 6 8

6 8 8

; 8

: 8

5 8

4 8

2 8

1 8

 �
�
�
�
�
�
�'
�
�
(

& � � � ' & � �
 � (

Typical IDD vs. Frequency (External Clock, Ta=-40�C)

Typical IDD vs. Frequency (External Clock, Ta=0�C)

Appendix A Device Characteristic Graphics

141

8 2 8 8 8 6 8 8 8 8 6 2 8 8 8 / 8 8 8 8

:

5

4

2

1

9

/

6

8

/ " 1 &
/ " / &

9 " 9 &
9 &

2 &

1 &

4 &

2 " 2 &

� �
�
�'
�
�
(

. � 7 I 7 3 � > � ') B E (

��
�
�'
�
�
(

. � 7 I 7 3 � > � ') B E (

8 2 8 8 8 6 8 8 8 8 6 2 8 8 8 / 8 8 8 8

:

5

4

2

1

9

/

6

8

4 &

2 " 2 &

9 " 9 &
9 &

2 &

1 &

/ " 1 &
/ " / &

Typical IDD vs. Frequency (External Clock, Ta=+25�C)

Typical IDD vs. Frequency (External Clock, Ta=+85�C)

142

A/D Type MCU

� �
�
�'
�
�
(

. � 7 I 7 3 � > � ') B E (

8 2 8 8 8 6 8 8 8 8 6 2 8 8 8 / 8 8 8 8

:

5

4

2

1

9

/

6

8

4 &

2 " 2 &

9 " 9 &
9 &

2 &

1 &

/ " 1 &
/ " / &

� �
�
�'
�
�
(

. � 7 I 7 3 � > � ') B E (

8 2 8 8 8 6 8 8 8 8 6 2 8 8 8 / 8 8 8 8

:

5

4

2

1

9

/

6

8

4 &

2 " 2 &

9 " 9 &
9 &

2 &

1 &

/ " 1 &
/ " / &

Typical VLVR vs. Temperature

Appendix A Device Characteristic Graphics

143

* 4 8 * 1 8 * / 8 8 / 8 1 8 4 8 : 8 6 8 8

&
%
&
�
�'
&
�
�

�
(

� � ' � � (

6 / 8

9 " 4

9 " 2

9 " 1

9 " 9

9 " /

9 " 6

9 " 8

/ " ;

/ " :

/ " 5

/ " 4

/ " 2

/ " 1

144

A/D Type MCU

A p p e n d i x B

Package Information

Appendix B Package Information

145

B

18-pin DIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 895 � 915

B 240 � 260

C 125 � 135

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 295 � 315

I 335 � 375

� 0� � 15�

146

A/D Type MCU

6 :

6

6 8

;

�

�

0

�

�

7

.

�

B

�

18-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394 � 419

B 290 � 300

C 14 � 20

C� 447 � 460

D 92 � 104

E � 50 �

F 4 � �

G 32 � 38

H 4 � 12

� 0� � 10�

Appendix B Package Information

147

6 :

6

6 8

;

� 0

�

�

7 .

�

B

�

� �

24-pin SKDIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 1235 � 1265

B 255 � 265

C 125 � 135

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 295 � 315

I 345 � 360

� 0� � 15�

148

A/D Type MCU

/ 1

6

6 9

6 /

�

�

0

�

�

7 . �

B

�

24-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394 � 419

B 290 � 300

C 14 � 20

C� 590 � 614

D 92 � 104

E � 50 �

F 4 � �

G 32 � 38

H 4 � 12

� 0� � 10�

Appendix B Package Information

149

/ 1

6

6 9

6 /

� 0

�

�

7 .

� �
�

B

�

28-pin SKDIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 1375 � 1395

B 278 � 298

C 125 � 135

D 125 � 145

E 16 � 20

F 50 � 70

G � 100 �

H 295 � 315

I 330 � 375

� 0� � 15�

150

A/D Type MCU

� �
/ :

6

6 2

6 1

�

�

0

�

�

7 . �

B

�

28-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394 � 419

B 290 � 300

C 14 � 20

C� 697 � 713

D 92 � 104

E � 50 �

F 4 � �

G 32 � 38

H 4 � 12

� 0� � 10�

Appendix B Package Information

151

/ :

6

6 2

6 1

� 0

�

�

.

� �
�

B

�7

48-pin SSOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 395 � 420

B 291 � 299

C 8 � 12

C� 613 � 637

D 85 � 99

E � 25 �

F 4 � 10

G 25 � 35

H 4 � 12

� 0� � 8�

152

A/D Type MCU

1 :

6

/ 2

/ 1

� 0

�

�

.

� �
�

B

�
7

Headquarters and subsidiaries

Copyright � 2005 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this handbook is believed to be accurate at the time of publication. However, Holtek assumes
no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for
the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without
further modification, nor recommends the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices or sys-
tems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District,
Shenzhen, China 518057
Tel: 0755-8616-9908, 8616-9308
Fax: 0755-8616-9533

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 010-6641-0030, 6641-7751, 6641-7752
Fax: 010-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 028-6653-6590
Fax: 028-6653-6591

Holmate Semiconductor, Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com

A/D Type MCU

	Contents
	Part I Microcontroller Profile
	Chapter 1
Hardware Structure
	Introduction
	Features
	Selection Table
	Block Diagram
	Pin Assignment
	Pin Description
	Absolute Maximum Ratings
	D.C. Characteristics
	A.C. Characteristics
	System Architecture
	Program Memory
	Data Memory
	Special Function Registers
	Input/Output Ports
	Timer/Event Counters
	Pulse Width Modulator
	Analog to Digital Converter
	I^2C Bus Serial Interface
	Interrupts
	Reset and Initialization
	Oscillator
	HALT and Wake-up in Power Down Mode
	Watchdog Timer
	Configuration Options
	Application Circuits

	Part II Programming Language
	Chapter 2 Instruction Set Introduction
	Instruction Set
	Instruction Set Summary

	Chapter 3 Instruction Definition
	Chapter 4 Assembly Language and

Cross Assembler
	Notational Conventions
	Statement Syntax
	Assembly Directives
	Assembly Instructions
	Miscellaneous
	Cross Assembler Options
	Assembly Listing File Format

	Part III Development Tools
	Chapter 5 MCU Programming Tools
	HT-IDE3000 Development Environment
	Holtek In-Circuit Emulator － HT-ICE
	HT-ICE Interface Card
	OTP Programmer
	OTP Adapter Card
	System Configuration
	Installation

	Chapter 6 Quick Start

	Appendix
	Appendix A Device Characteristic Graphics
	Appendix B Package Information

