4-BIT ARITHMETIC LOGIC UNIT

The SN54/74LS181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic, operations on two variables and a variety of arithmetic operations.

- Provides 16 Arithmetic Operations Add, Subtract, Compare, Double, Plus Twelve Other Arithmetic Operations
- Provides all 16 Logic Operations of Two Variables Exclusive - OR, Compare, AND, NAND, OR, NOR, Plus Ten other Logic Operations
- Full Lookahead for High Speed Arithmetic Operation on Long Words
- Input Clamp Diodes

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.

PIN NAMES

$\bar{A}_{0}-\bar{A}_{3}, \bar{B}_{0}-\bar{B}_{3}$
$S_{0}-S_{3}$
M
C_{n}
$\mathrm{~F}_{0}-\bar{F}_{3}$
$\frac{A}{G}=B$
G
\bar{P}
C_{n+4}

NOTES:

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW .
b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

Operand (Active LOW) Input
Function - Select Inputs Mode Control Input Carry Input
Function (Active LOW) Outputs Comparator Output
Carry Generator (Active LOW) Output
Carry Propagate (Active LOW)

LOADING (Note a)	
HIGH	LOW
1.5 U.L.	0.75 U.L.
2.0 U.L.	1.0 U.L.
0.5 U.L.	0.25 U.L.
2.5 U.L.	1.25 U.L.
10 U.L.	5 (2.5) U.L.
Open Collector	5 (2.5) U.L.
10 U.L.	10 U.L.
10 U.L.	5 U.L.
10 U.L.	5 (2.5) U.L.

Output
Carry Output
10 U.L. 5 (2.5) U.L.

SN54/74LS181

4-BIT ARITHMETIC LOGIC UNIT LOW POWER SCHOTTKY

J SUFFIX
CERAMIC CASE 623-05

N SUFFIX
PLASTIC CASE 649-03
ORDERING INFORMATION
Ceramic SN74LSXXXN Plastic

```
SN54LSXXXJ
SN54LSXXXJ



\section*{SN54/74LS181}

\section*{LOGIC DIAGRAM}


\section*{FUNCTIONAL DESCRIPTION}

The SN54/74LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select Inputs ( \(\mathrm{S}_{0} \ldots \mathrm{~S}_{3}\) ) and the Mode Control Input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations.

When the Mode Control Input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control Input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4 -bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the \(C_{n+4}\) output, or for carry lookahead between packages using the signals \(P\) (Carry Propagate) and G (Carry Generate), P and G are not affected by carry in. When speed requirements are not stringent, the LS181 can be used in a simple ripple carry mode by connecting the Carry Output \(\left(C_{n+4}\right)\) signal to the Carry Input \(\left(C_{n}\right)\) of the next unit. For high speed operation the LS181 is used in conjunction with the 9342 or 93S42 carry lookahead circuit. One carry lookahead package is required for each group of the four LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability
over extremely long word lengths.
The A = B output from the LS181 goes HIGH when all four \(\bar{F}\) outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The \(A=B\) output is open collector and can be wired-AND with other \(A=B\) outputs to give a comparison for more then four bits. The \(A=B\) signal can also be used with the \(C_{n+4}\) signal to indicate \(A>B\) and \(A<B\).

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow.

As indicated, the LS181 can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

FUNCTION TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{MODE SELECT INPUTS} & \multicolumn{2}{|r|}{ACTIVE LOW INPUTS \& OUTPUTS} & \multicolumn{2}{|r|}{ACTIVE HIGH INPUTS \& OUTPUTS} \\
\hline S3 & S2 & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{0}\) & \[
\begin{aligned}
& \text { LOGIC } \\
& (M=H)
\end{aligned}
\] & ARITHMETIC**
\[
(M=L)\left(C_{n}=L\right)
\] & \[
\begin{aligned}
& \text { LOGIC } \\
& (M=H)
\end{aligned}
\] & ARITHMETIC**
\[
(M=L)\left(C_{n}=H\right)
\] \\
\hline L & L & L & L & A & A minus 1 & A & A \\
\hline L & L & L & H & \(A B\) & AB minus 1 & \(\underline{A+B}\) & A \(+\underline{B}\) \\
\hline L & L & H & L & A + B & \(A B\) minus 1 & AB & \(A+B\) \\
\hline L & L & H & H & Logical 1 & inus 1 & Logical 0 & nus 1 \\
\hline L & H & L & L & \(\underline{A}+B\) & A plus ( \(\mathrm{A}+\mathrm{B}\) ) & AB & A plus AB \\
\hline L & H & L & H & B & \(A B\) plus ( \(A+B\) ) & B & \((A+B)\) plus \(A B\) \\
\hline L & H & H & L & \(\mathrm{A} \oplus \underline{\mathrm{B}}\) & A minus \(B\) minus 1 & \(A \oplus B\) & A minus B minus 1 \\
\hline L & H & H & H & \(\underline{A}+B\) & \(A+B\) & \(\underline{A B}\) & AB minus 1 \\
\hline H & L & L & L & AB & A plus ( \(\mathrm{A}+\mathrm{B}\) ) & \(A+B\) & \(A\) plus AB \\
\hline H & L & L & H & \(A \oplus B\) & A plus B & \(A \oplus B\) & A plus \(B\) \\
\hline H & L & H & L & B & AB plus ( \(\mathrm{A}+\mathrm{B}\) ) & B & \((A+B)\) plus \(A B\) \\
\hline H & L & H & H & A + B & \(A+B\) & AB & \(A B\) minus 1 \\
\hline H & H & L & L & Logical 0 & plus \(\mathrm{A}^{*}\) & Logical 1 & plus \(\mathrm{A}^{*}\) \\
\hline H & H & L & H & AB & AB plus A & A + B & \((\mathrm{A}+\underline{B})\) plus A \\
\hline H & H & H & L & AB & AB plus A & \(A+B\) & ( \(\mathrm{A}+\mathrm{B}\) ) Plus A \\
\hline H & H & H & H & A & A & A & A minus 1 \\
\hline
\end{tabular}

L = LOW Voltage Level
\(\mathrm{H}=\mathrm{HIGH}\) Voltage Level
*Each bit is shifted to the next more significant position
**Arithmetic operations expressed in 2s complement notation

\section*{LOGIC SYMBOLS}

\section*{ACTIVE LOW OPERANDS}


\section*{ACTIVE HIGH OPERANDS}


GUARANTEED OPERATING RANGES
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Symbol & \multicolumn{1}{|c|}{ Parameter } & & Min & Typ & Max & Unit \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply Voltage & 54 & 4.5 & 5.0 & 5.5 & V \\
& & 74 & 4.75 & 5.0 & 5.25 & \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating Ambient Temperature Range & 54 & -55 & 25 & 125 & \({ }^{\circ} \mathrm{C}\) \\
& & 74 & 0 & 25 & 70 & \\
\hline IOH & Output Current - High & 54,74 & & & -0.4 & mA \\
\hline IOL & Output Current - Low & 54 & & & 4.0 & mA \\
& & 74 & & & 8.0 & \\
\hline \(\mathrm{~V}_{\mathrm{OH}}\) & Output Voltage - High (A = B only) & 54,74 & & & 5.5 & V \\
\hline
\end{tabular}

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Parameter}} & & Limits & & \multirow[b]{2}{*}{Unit} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Test Conditions}} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & \multicolumn{2}{|l|}{Guaranteed Input HIGH Voltage for All Inputs} \\
\hline & \multirow[b]{2}{*}{Input LOW Voltage} & 54 & & & 0.7 & \multirow[b]{2}{*}{V} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Guaranteed Input LOW Voltage for All Inputs}} \\
\hline \(V_{\text {IL }}\) & & 74 & & & 0.8 & & & \\
\hline \(\mathrm{V}_{\text {IK }}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & -0.65 & -1.5 & V & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}\)} \\
\hline \multirow[b]{2}{*}{VOH} & \multirow[b]{2}{*}{Output HIGH Voltage} & 54 & 2.5 & 3.5 & & V & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}\) or \(V_{\text {IL }}\) per Truth Table}} \\
\hline & & 74 & 2.7 & 3.5 & & V & & \\
\hline \multirow{4}{*}{VOL} & \multirow[t]{4}{*}{\begin{tabular}{l}
Output LOW Voltage Except \(G\) and \(P\) \\
Output \(\bar{G}\) \\
Output \(\bar{P}\)
\end{tabular}} & 54, 74 & & 0.25 & 0.4 & V & \(\mathrm{IOL}=4.0 \mathrm{~mA}\) & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { MIN, } \\
& \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL or or }} \mathrm{V}_{\text {IH }} \\
& \text { per Truth Table }
\end{aligned}
\]} \\
\hline & & 74 & & 0.35 & 0.5 & V & \(\mathrm{I} \mathrm{OL}=8.0 \mathrm{~mA}\) & \\
\hline & & 54, 74 & & & 0.7 & V & \(\mathrm{l} \mathrm{OL}=16 \mathrm{~mA}\) & \\
\hline & & 54
74 & & & \[
\begin{aligned}
& 0.6 \\
& 0.5
\end{aligned}
\] & V & \(\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}\) & \\
\hline IOH & Output HIGH Current & 54, 74 & & & 100 & \(\mu \mathrm{A}\) & \multicolumn{2}{|l|}{\[
\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}
\]
\[
\text { or } V_{\text {IL }} \text { per Truth Table }
\]} \\
\hline \multirow[t]{2}{*}{\({ }^{\text {IH }}\)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Input HIGH Current \\
Mode Input Any A or B Input Any S Input \(\mathrm{C}_{\mathrm{n}}\) Input
\end{tabular}} & & & \[
\begin{gathered}
20 \\
60 \\
80 \\
100
\end{gathered}
\] & \(\mu \mathrm{A}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\)} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Mode Input \\
Any A or B Input \\
Any S Input \\
\(\mathrm{C}_{\mathrm{n}}\) Input
\end{tabular}} & & & 0.1
0.3
0.4
0.5 & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\)} \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current Mode Input Any A or B Input Any S Input \(\mathrm{C}_{\mathrm{n}}\) Input} & & & \[
\begin{aligned}
& -0.4 \\
& -1.2 \\
& -1.6 \\
& -2.0
\end{aligned}
\] & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}\)} \\
\hline Ios & \multicolumn{2}{|l|}{Short Circuit Current (Note 2)} & -20 & & -100 & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}\)} \\
\hline \multirow{4}{*}{ICC} & \multirow[t]{2}{*}{Power Supply Current See Note 1A} & 54 & & & 32 & \multirow{4}{*}{mA} & \multicolumn{2}{|l|}{\multirow{4}{*}{\(V_{C C}=M A X\)}} \\
\hline & & 74 & & & 34 & & & \\
\hline & \multirow[b]{2}{*}{See Note 1B} & 54 & & & 35 & & & \\
\hline & & 74 & & & 37 & & & \\
\hline
\end{tabular}

Note 1.
With outputs open, \(\mathrm{I}_{\mathrm{CC}}\) is measured for the following conditions:
A. S0 through S3, M, and A inputs are at 4.5 V , all other inputs are grounded.
B. S 0 through S 3 and M are at 4.5 V , all other inputs are grounded.

Note 2: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.\), Pin \(\left.12=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Test Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & Propagation Delay, ( \(C_{n}\) to \(C_{n+4}\) ) & & \[
\begin{aligned}
& 18 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 27 \\
& 20
\end{aligned}
\] & ns & M = 0 V , (Sum or Diff Mode) See Fig. 4 and Tables I and II \\
\hline tPLH
tPHL & ( \(\mathrm{C}_{\mathrm{n}}\) to F Outputs) & & \[
\begin{aligned}
& 17 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 26 \\
& 20
\end{aligned}
\] & ns & M = 0 V , (Sum Mode) See Fig. 4 and Table I \\
\hline \begin{tabular}{l}
tpLH \\
tpHL
\end{tabular} & ( \(\overline{\mathrm{A}}\) or \(\overline{\mathrm{B}}\) Inputs to \(\overline{\mathrm{G}}\) Output) & & \[
\begin{aligned}
& 19 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 29 \\
& 23
\end{aligned}
\] & ns & \begin{tabular}{l}
\[
\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}
\] \\
(Sum Mode) See Fig. 4 and Table I
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\bar{A}\) or \(\bar{B}\) Inputs to \(\overline{\mathrm{G}}\) Output) & & \[
\begin{aligned}
& 21 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 32
\end{aligned}
\] & ns & \[
\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}
\]
\[
\text { (Diff Mode) See Fig. } 5 \text { and Table II }
\] \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\overline{\mathrm{A}}\) or \(\overline{\mathrm{B}}\) Inputs to \(\overline{\mathrm{P}}\) Output) & & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & ns & \begin{tabular}{l}
\[
\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}
\] \\
(Sum Mode) See Fig. 4 and Table I
\end{tabular} \\
\hline tPLH & ( \(\overline{\mathrm{A}}\) or \(\overline{\mathrm{B}}\) Inputs to \(\overline{\mathrm{P}}\) Output) & & \[
\begin{aligned}
& 20 \\
& 22
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 33
\end{aligned}
\] & ns & \begin{tabular}{l}
\[
\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}
\] \\
(Diff Mode) See Fig. 5 and Table II
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\bar{A}_{X}\) or \(\bar{B}_{X}\) Inputs to \(\bar{F}_{X}\) Output) & & \[
\begin{aligned}
& 21 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 20
\end{aligned}
\] & ns & \begin{tabular}{l}
\[
\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}
\] \\
(Sum Mode) See Fig. 4 and Table I
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\bar{A}_{X}\) or \(\bar{B}_{X}\) Inputs to \(\bar{F}_{X}\) Output) & & \[
\begin{aligned}
& 21 \\
& 21
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 32
\end{aligned}
\] & ns & \[
\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}
\]
\[
\text { (Diff Mode) See Fig. } 5 \text { and Table II }
\] \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\mathrm{A}_{\mathrm{X}}\) or BX Inputs to \(\mathrm{F}_{\mathrm{XH}}\) Outputs) & & & \[
\begin{aligned}
& 38 \\
& 26
\end{aligned}
\] & ns & \begin{tabular}{l}
\[
\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}
\] \\
(Sum Mode) See Fig. 4 and Table I
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\mathrm{A}_{\mathrm{X}}\) or BX Inputs to \(\mathrm{F}_{\mathrm{XH}}\) Outputs) & & & \[
\begin{aligned}
& 38 \\
& 38
\end{aligned}
\] & ns & \begin{tabular}{l}
\[
\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}
\] \\
(Diff Mode) See Fig. 5 and Table II
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\overline{\mathrm{A}}\) or \(\overline{\mathrm{B}}\) Inputs to \(\overline{\mathrm{F}}\) Outputs) & & \[
\begin{aligned}
& 22 \\
& 26
\end{aligned}
\] & \[
\begin{aligned}
& 33 \\
& 38
\end{aligned}
\] & ns & M = 4.5 V (Logic Mode) See Fig. 4 and Table III \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\bar{A}\) or \(\bar{B}\) Inputs to \(\mathrm{C}_{\mathrm{n}+4}\) Output) & & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 38 \\
& 38
\end{aligned}
\] & ns & \begin{tabular}{l}
\[
\mathrm{M}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}
\] \\
(Sum Mode) See Fig. 6 and Table I
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & ( A or B Inputs to \(\mathrm{C}_{\mathrm{n}+4}\) Output) & & \[
\begin{aligned}
& 27 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& 41 \\
& 41
\end{aligned}
\] & ns & \[
\mathrm{M}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}
\]
(Diff Mode) \\
\hline \[
\begin{aligned}
& \text { tpLH } \\
& \text { tPHL }
\end{aligned}
\] & ( \(\overline{\mathrm{A}}\) or \(\overline{\mathrm{B}}\) Inputs to \(\mathrm{A}=\mathrm{B}\) Output) & & \[
\begin{aligned}
& 33 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 62
\end{aligned}
\] & ns & \[
\begin{aligned}
& \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\
& \text { (Diff Mode) See Fig. } 5 \text { and Table II }
\end{aligned}
\] \\
\hline
\end{tabular}

AC WAVEFORMS


Figure 4


Figure 5


Figure 6

\section*{SN54/74LS181}

SUM MODE TEST TABLE I
FUNCTION INPUTS: \(\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Input Under Test} & \multicolumn{2}{|c|}{Other Input Same Bit} & \multicolumn{2}{|r|}{Other Data Inputs} & \multirow[b]{2}{*}{\begin{tabular}{l}
Output \\
Under \\
Test
\end{tabular}} \\
\hline & & \[
\begin{aligned}
& \text { Apply } \\
& 4.5 \mathrm{~V}
\end{aligned}
\] & Apply GND & \[
\begin{gathered}
\text { Apply } \\
4.5 \mathrm{~V}
\end{gathered}
\] & Apply GND & \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & \(A_{1}\) & \(\mathrm{B}_{1}\) & None & Remaining \(A\) and \(B\) & \(\mathrm{C}_{n}\) & FI \\
\hline \[
\begin{aligned}
& \text { tpLH } \\
& \text { tpHI }
\end{aligned}
\] & \(\mathrm{B}_{1}\) & \(A_{1}\) & None & Remaining \(A\) and \(B\) & \(\mathrm{C}_{n}\) & FI \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & \(A_{1}\) & \(\mathrm{B}_{1}\) & None & \(\mathrm{C}_{n}\) & \begin{tabular}{l}
Remaining \\
\(A\) and \(B\)
\end{tabular} & \(\mathrm{F}_{1+1}\) \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & \(\bar{B}_{1}\) & \(\mathrm{A}_{1}\) & None & \(\mathrm{C}_{n}\) & Remaining \(A\) and \(B\) & \(\bar{F}_{1+1}\) \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & B & None & None & \begin{tabular}{l}
Remaining \\
\(A\) and \(B, C_{n}\)
\end{tabular} & P \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & A & None & None & \begin{tabular}{l}
Remaining \\
A and \(\mathrm{B}, \mathrm{C}_{\mathrm{n}}\)
\end{tabular} & P \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & None & B & Remaining B & Remaining \(\mathrm{A}, \mathrm{C}_{\mathrm{n}}\) & G \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & None & A & Remaining B & Remaining A, \(C_{n}\) & G \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & None & B & Remaining B & Remaining \(\mathrm{A}, \mathrm{C}_{\mathrm{n}}\) & \(C_{n+4}\) \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & None & A & Remaining B & \[
\begin{gathered}
\text { Remaining } \\
\text { A. } \mathrm{C}_{n}
\end{gathered}
\] & \(\mathrm{C}_{\mathrm{n}+4}\) \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & \(\mathrm{C}_{n}\) & None & None & \[
\frac{\text { All }}{\mathrm{A}}
\] & \[
\begin{gathered}
\mathrm{All} \\
\mathrm{~B}
\end{gathered}
\] & Any F or \(C_{n+4}\) \\
\hline
\end{tabular}

DIFF MODE TEST TABLE II
FUNCTION INPUTS: \(\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=\mathrm{M}=0 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Input Under Test} & \multicolumn{2}{|c|}{Other Input Same Bit} & \multicolumn{2}{|c|}{Other Data Inputs} & \multirow[b]{2}{*}{\begin{tabular}{l}
Output \\
Under Test
\end{tabular}} \\
\hline & & \[
\begin{aligned}
& \text { Apply } \\
& 4.5 \mathrm{~V}
\end{aligned}
\] & Apply GND & \[
\begin{aligned}
& \text { Apply } \\
& 4.5 \mathrm{~V}
\end{aligned}
\] & Apply GND & \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & None & B & \[
{\underset{A}{\text { Remaining }}}^{2}
\] & Remaining \(B, C_{n}\) & \(\mathrm{F}_{1}\) \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & A & None & \[
{\underset{A}{\text { Remaining }}}^{2}
\] & Remaining \(B, C_{n}\) & \(\mathrm{F}_{1}\) \\
\hline \[
\overline{\text { tpLH }}
\]
tPHL & \(A_{1}\) & None & \(\mathrm{B}_{1}\) & \[
\begin{gathered}
\text { Remaining } \\
B, C_{n}
\end{gathered}
\] & Remaining
A & \(\mathrm{F}_{1+1}\) \\
\hline \[
\begin{aligned}
& \text { tpLH } \\
& \text { tphen }
\end{aligned}
\] & \(\mathrm{B}_{1}\) & \(\bar{A}_{1}\) & None & \[
\begin{gathered}
\text { Remaining } \\
B, C_{n}
\end{gathered}
\] & Remaining A & \(\bar{F}_{1+1}\) \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & None & B & None & Remaining \(A\) and \(B, C_{n}\) & P \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & \(\bar{B}\) & A & None & None & \begin{tabular}{l}
Remaining \\
\(A\) and \(B, C_{n}\)
\end{tabular} & \(\bar{P}\) \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & B & None & None & \begin{tabular}{l}
Remaining \\
\(A\) and \(B_{1}, C_{n}\)
\end{tabular} & G \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & None & A & None & \begin{tabular}{l}
Remaining \\
\(A\) and \(B, C_{n}\)
\end{tabular} & G \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & None & B & \[
{\underset{A}{\text { Remaining }}}^{2}
\] & Remaining \(B, C_{n}\) & A = B \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & A & None & \[
\underset{A}{\text { Remaining }}
\] & Remaining \(B, C_{n}\) & \(A=B\) \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & B & None & None & Remaining \(A\) and \(B, C_{n}\) & \(c_{n+4}\) \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & None & A & None & Remaining \(A\) and \(B, C_{n}\) & \(\mathrm{C}_{n+4}\) \\
\hline \[
\begin{aligned}
& \text { tpLH } \\
& \text { tPHL }
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{n}}\) & None & None & \[
\overline{\mathrm{A}} \mathrm{All} \overline{\mathrm{~B}} \mathrm{~B}
\] & None & \(\mathrm{C}_{n+4}\) \\
\hline
\end{tabular}

LOGIC MODE TEST TABLE III
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Input Under Test} & \multicolumn{2}{|c|}{Other Input Same Bit} & \multicolumn{2}{|l|}{Other Data Inputs} & \multirow[b]{2}{*}{Output Under Test} & \multirow[b]{2}{*}{Function Inputs} \\
\hline & & \[
\begin{gathered}
\text { Apply } \\
4.5 \mathrm{~V}
\end{gathered}
\] & Apply GND & \[
\begin{gathered}
\text { Apply } \\
4.5 \mathrm{~V}
\end{gathered}
\] & Apply GND & & \\
\hline \[
\begin{aligned}
& \hline \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & A & None & B & None & \begin{tabular}{l}
Remaining \\
A and \(\mathrm{B}, \mathrm{C}_{\mathrm{n}}\)
\end{tabular} & Any F & \[
\begin{gathered}
\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V} \\
\mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] & B & None & A & None & \begin{tabular}{l}
Remaining \\
\(A\) and \(B, C_{n}\)
\end{tabular} & Any F & \[
\begin{gathered}
\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V} \\
\mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}
\end{gathered}
\] \\
\hline
\end{tabular}```

